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We show that the one-particle density matrix ρ can be used to characterize the interaction-driven many-
body localization transition in closed fermionic systems. The natural orbitals (the eigenstates of ρ) are
localized in the many-body localized phase and spread out when one enters the delocalized phase, while the
occupation spectrum (the set of eigenvalues of ρ) reveals the distinctive Fock-space structure of the many-
body eigenstates, exhibiting a steplike discontinuity in the localized phase. The associated one-particle
occupation entropy is small in the localized phase and large in the delocalized phase, with diverging
fluctuations at the transition. We analyze the inverse participation ratio of the natural orbitals and find that it
is independent of system size in the localized phase.
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Introduction.—While the theory of noninteracting dis-
ordered systems is well developed [1,2], the possibility of a
localization transition in closed interacting systems has
only recently been firmly established [3–23]. This many-
body localization (MBL) transition occurs at finite energy
densities and is not a conventional thermodynamic tran-
sition [24,25]. Instead, it can be understood as a dynamical
phase transition, associated with the emergence of a
complete set of local conserved quantities in the localized
phase, which thus behaves as an integrable system [26–30].
This restricts the entanglement entropy of the eigenstates to
an area law [31], in contrast to the volume law predicted by
the eigenstate thermalization hypothesis for the ergodic
delocalized phase [32–34]. At the localization transition,
the fluctuations of the entanglement entropy diverge
[16,35]. The effects of MBL are also observed in the
dynamics following, for example, a global quench from a
product state, wherein dephasing between the effective
degrees of freedom leads to a characteristic logarithmic
growth of the entanglement entropy [6,10,12]. These
features comprise a much richer set of signatures than in
the context of noninteracting systems, for which, in the
spirit of one-parameter scaling, the notion of a localization
length based on single-particle wave functions generally
suffices [1,2].
In view of the rich phenomenology of many-body

localization, it is natural to ask, both from a fundamental
point of view and for the interpretation of experimental
data [36,37], to which extent (if at all) the MBL transition
can be detected and characterized from a single-particle
perspective. Here, we show that a rather complete charac-
terization of many-body localization is indeed possible
based on the eigenvalues (occupations) and eigenstates
(natural orbitals) of the one-particle density matrix. The

one-particle density matrix was originally introduced
by Onsager and Penrose to extend the notion of a
Bose-Einstein condensate to interacting systems [38].
Importantly, the natural orbitals take a Bloch form in
translationally invariant systems, providing a true many-
body generalization of the Bloch theorem [39]. This
naturally suggests studying the effect of disorder, as in
recent studies of localization of hard-core bosons in a
quasiperiodic potential [40,41]. However, so far no con-
nection to many-body localization has been made.
We are further motivated to consider the one-particle

density matrix because it naturally focuses on the dynamics
of one particle in the presence of all the others, without the
need to resort to a mean-field theory or to sacrifice particle
indistinguishability. As we will see, this perspective retains
sufficient information to capture the genuine many-body
aspects that set many-body localization apart from
Anderson localization transitions in noninteracting sys-
tems. In particular, the occupations sharply reorganize
themselves from being close to either zero or one in the
localized phase to being in between these extremal values
in the delocalized phase, thus reflecting a delocalization
transition in Fock space that corresponds to a mixing of
product states. It follows that in the localized phase the
occupation spectrum develops a steplike discontinuity,
similar to a Fermi liquid. The associated one-particle
occupation entropy is large and proportional to the system
size in the delocalized phase, corresponding to the volume
law of thermal states, while in the localized phase it is
small. The dynamics of one particle in the effective bath of
the others thus provides complementary information to the
dynamics of a spatially confined region in the effective bath
of its surrounding. In addition, we show that the transition
leaves direct signatures in the natural orbitals, which are
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localized in the many-body localized phase and spread out
over the system when one enters the delocalized phase. We
show that the inverse participation ratio (IPR) of the natural
orbitals depends on the system size in the delocalized
phase, while it is independent of system size in the
localized phase.
Model and method.—We consider spinless fermions in

one dimension with a nearest-neighbor repulsion and
diagonal disorder, described by the Hamiltonian

H ¼ t
XL

i¼1

�
−
1

2
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�
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2

�
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Here, c†i creates a fermion on site i ¼ 1; 2;…; L and ni ¼
c†i ci is the associated number operator. Energies are
expressed in units of the nearest-neighbor hopping constant
t, so that V is a dimensionless measure of the strength of the
nearest-neighbor repulsive interactions. The diagonal dis-
order is introduced via a box distribution of the on-site
potentials ϵi ∈ ½−W;W�. We study this system using exact
diagonalization at finite sizes L ¼ 10; 12; 14 (105 disorder
realizations), L ¼ 16 (103 realizations), and L ¼ 18 (500
realizations), imposing periodic boundary conditions and
fixing the overall occupation at half filling (number of
particles N ¼ L=2). We mainly focus on the energy region
around the band center, ε ¼ 1 where ε ¼ 2ðE − EminÞ=
ðEmax − EminÞ, with Emax and Emin being the maximum and
minimum energy for each disorder realization, and take the
six eigenstates closest to this energy. This energy corre-
sponds to infinite temperature in the thermodynamic limit.
At the fixed interaction strength V ¼ 1, the critical disorder
strength Wc is found to take values in the range between 3
and 4 [7,8,42–44].
Given a many-body eigenstate jψni of the Hamiltonian

(1), the one-particle density matrix is defined as

ρij ¼ hψnjc†i cjjψni: ð2Þ

The natural orbitals jϕαi, with α ¼ 1; 2;…; L, are obtained
by diagonalizing ρ,

ρjϕαi ¼ nαjϕαi; ð3Þ

which delivers a basis of single-particle states. The eigen-
values nα are interpreted as occupations, with

P
L
α¼1 nα ¼

trρ ¼ N equal to the total number of particles in the
system. We order the natural orbitals by descending
occupation, n1 ≥ n2 ≥ … ≥ nL.
Occupation spectrum.—In a noninteracting fermionic

system, barring degeneracies, each many-body eigenstate
jψni can be written as a Slater determinant of N single-
particle states. The occupations from the one-particle

density matrix are then fixed to nα ¼ 0 or 1, with the
natural orbitals with nα ¼ 1 spanning the space of the
single-particle states used in the Slater determinant.
Occupations departing from nα ¼ 0 or 1 can therefore
be interpreted as a signature of the true many-body nature
of the eigenstates in the interacting system and, thus, as a
proxy of the delocalization of such states in Fock space. We
expect this Fock-space delocalization to be pronounced in
the metallic phase, while it should be suppressed in the
MBL phase [3,4].
In Fig. 1(a) we show the disorder-averaged occupations

for different values of disorder for L ¼ 16, with h:i
denoting the disorder average. The horizontal dashed lines
represent the occupations hnαi ¼ 1 for α ≤ N, hnαi ¼ 0 for
α > N in the noninteracting limit V ¼ 0, where the system
is Anderson localized for any finite disorder strength. The
quasidiscontinuous jump Δn ¼ nN − nNþ1 ¼ 1 between
these values is indicated by a vertical line. In the interacting
system, deep in the localized phase (W ¼ 6; 8), half of the
natural orbitals remain almost fully occupied, hnαi ≈ 1,
with the other half being almost unoccupied, hnαi ≈ 0. As
one decreases the disorder and approaches the transition
(W ¼ 3), more orbitals acquire a finite occupation, while
for an even smaller disorder, in the delocalized phase
(W ¼ 0.4; 0.8), the occupation of all orbitals approaches
the mean filling fraction, hnαi ≈ N=L ¼ 1=2.
The redistribution of occupations with decreasing dis-

order goes along with a reduction of the steplike behavior
quantified by Δn. A more detailed view of this aspect is
provided by the inset of Fig. 1(a), showing the disorder
dependence of the occupations hnNi; hnNþ1i for three
values of interaction strength, V ¼ 0.5; 1.0; 1.5. In the
delocalized phase, both occupations are close to the mean
filling fraction, hnαi ≈ N=L ¼ 1=2, while deep in the
localized phase they tend to their asymptotic values
hnNi ¼ 1, hnNþ1i ¼ 0 [45]. The dependence of the dis-
continuity Δn on energy density, shown in the left panel
of Fig. 1(b), recovers the many-body mobility edge
[3,16,44,46], while at small and large interaction strengths
(right panel) the delocalized phase shrinks, consistent with
observations from dynamics in the same model [43].
According to these results, the occupation spectrum serves
as a reliable indicator of many-body localization.
One-particle occupation entropy.—A well docu-

mented aspect of MBL is the appearance of strong
fluctuations around the localization-delocalization transi-
tion [16,23,47–49]. In terms of the occupations, this is
addressed in Fig. 1(c), which shows the probability dis-
tribution functions PðnαÞ for different disorder strengths in
a semilog plot. In the large disorder limit the distribution is
bimodal with peaks at nα ¼ 0; 1, with very little weight in
the central region between these extremal values. This
bimodal distribution is characteristic of the localized state,
analogous to the noninteracting scenario. As expected,
close to the transition (W ¼ 3) the distribution is wide,
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with significant weight across the whole range of
occupations. Finally, in the delocalized phase with low
enough disorder the distribution again becomes narrower,
but now it is concentrated around the filling fraction
N=L ¼ 1=2.
In order to quantify these fluctuations further, we

consider the entropy

S ¼ −trρ ln ρ ¼ −
X

α

nα lnðnαÞ: ð4Þ

As this entropy is determined by the occupations of the
natural orbitals, we call this the one-particle occupation
entropy, to distinguish it from the entanglement entropy of
the many-body eigenstates. The disorder-averaged entropy
hSi is shown in the main panel of Fig. 2, as a function of
disorder strength for different system sizes. In the delo-
calized phase the entropy approaches the maximal value
ðL=2Þ ln 2, indicated by the dashed lines. This corresponds
to a volume law as displayed, in general, by extensive
thermodynamic properties and many-body eigenstates in
ergodic systems. In contrast, the entropy in the localized
phase is much smaller [45].
In the inset of Fig. 2 we show the variance var S ¼

hS2i − hSi2 of the entropy as a function of disorder
strength. For the corresponding case of the entanglement
entropy, it is known [16,31] that the variance vanishes in the
thermodynamic limit (L → ∞) both in the localized and in
the delocalized phase, where in the latter phase this is
consistent with the eigenstate thermalization hypothesis.
Furthermore, in finite systems, the variance of the entan-
glement entropy is sharply peaked in the crossover regime,
which is associated with the mixing and coexistence of
localized and delocalized regions near the transition,
becoming sharper with an increasing system size [16].
This universal behavior of the entanglement entropy is
mirrored by the one-particle occupation entropy. The
occupation spectrum therefore recovers a reliable signature
of the MBL transition, giving quantitative access to the
locus of the transition.

(a)

(b)

(c)

FIG. 1 (color online). (a) The main panel shows the disorder-
averaged occupation of the natural orbitals with index α for
different values of disorder strength (system size L ¼ 16,
interaction strength V ¼ 1). The dotted line shows the occupation
in a noninteracting system, which is independent of the disorder
strength. The vertical line indicates the expected discontinuous
behavior of the occupations in the infinite system-size limit of the
MBL phase. The emergence of this discontinuity is further
illustrated in the inset, which shows the average occupations
hnNi and hnNþ1i as a function of disorder strength, for L ¼ 16
and three values of the interaction (V ¼ 0.5; 1; 1.5). (b) Occupa-
tion discontinuity Δn as a function of disorder strength and
energy density (left panel) or interaction strength (right panel).
(c) Distribution of occupations nα in the delocalized phase
(W ¼ 0.4; 0.8), near the MBL transition (W ¼ 3.0) and deep
in the localized phase (W ¼ 6.0; 8.0), for system size L ¼ 16 and
interaction strength V ¼ 1.

FIG. 2 (color online). Dependence of the disorder averaged
one-particle occupation entropy hSi, defined in Eq. (4), on the
disorder strength, for different system sizes at interaction strength
V ¼ 1. The dashed lines indicate the maximal value ðL=2Þ ln 2,
corresponding to the volume law for the entropy in a fully
delocalized system. In contrast, in the localized phase the entropy
becomes small. The inset shows the variance varS of the entropy
due to sample-to-sample fluctuations in the disorder ensemble as
a function of disorder strength, for different system sizes at
interaction strength V ¼ 1. The peak in the variance indicates the
location of the MBL transition.
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Delocalization of natural orbitals.—Because of the
emerging degeneracy of the occupations deep in the
localized and delocalized phase, one may wonder whether
the natural orbitals themselves display any signatures of
the MBL transition. As we show in the insets of Figs. 3(a)
and 3(c), the orbitals indeed turn out to be well localized in
the MBL phase, while they are far more extended in the
delocalized phase. The multiply peaked structure of the
natural orbitals for weak disorder suggests that the delo-
calization transition involves the formation of a chain
throughout the system via which the particle can hop
resonantly. Given the complete set of natural orbitals, a
measure of the localization of the occupied states can then
be derived from the inverse participation ratio

IPR ¼ 1

N

XL

α¼1

nα
XL

i¼1

jϕαðiÞj4: ð5Þ

The IPR is normalized to take the maximal value 1 for a
system in which all occupied states are fully localized,

while it takes the minimal value 1=L when all occupied
states are fully extended. In between these two extremes,
the resonant-hopping picture for the delocalized phase
suggests that the IPR scales inversely with the system size,
while in the localized phase it should be independent of
system size. These tendencies are confirmed in the main
panels of Figs. 3(a)–3(c), which show, for three disorder
strengths in the delocalized, transitional, and localized
regime, how the probability distribution of the IPR depends
on the system size. In the delocalized phase [Fig. 3(a)],
the flow with system size is indicative of a 1=L behavior,
while in the localized phase [Fig. 3(c)] the distribution is
almost independent of system size, with a peak close to the
maximal value IPR ¼ 1. Close to the transition [Fig. 3(b)],
the IPR distribution is wide, with no discernible trend with
system size. It is, therefore, suggestive to introduce the
characteristic length ξ ¼ h1=IPRi. Figure 3(d) shows the
disorder-strength dependence of ξ for different system
sizes. In the localized regime this characteristic length is
independent of system size. With decreasing disorder
strength, ξ increases, whereas at very small disorder it
approaches the value ξ ≈ L=2. While ξ is still small at the
transition in the accessible system sizes, the orbitals spread
out significantly once one enters into the delocalized phase.
Moreover, as shown in the inset of Fig. 3(d), ξ depends
nonmonotonically on V: it first increases as V increases,
then takes a maximum at a W-dependent value and finally
decreases again in the large V limit. A similar behavior
was observed in spectral fluctuations in this model [43].
Our quantity ξ thus captures the delocalizing effect of
the interactions, both in the delocalized and in the MBL
phase.
Summary and outlook.—In conclusion, the one-particle

density matrix uncovers essential many-body aspects of
interacting disordered fermions. Our results suggest that in
the thermodynamic limit the one-particle occupation spec-
trum is continuous in the delocalized phase but develops a
finite discontinuity in the localized phase. The correspond-
ing occupation entropy shares features with the many-body
entanglement entropy, one of the principal vehicles for the
theoretical characterization of the many-body localization
transition. The delocalization is also observed in the
structure of the natural orbitals, which is reflected in a
system-size dependent inverse participation ratio. These
findings support the conceptual picture that the many-body
localization transition involves delocalization both in Fock
space and in real space. Our approach should, therefore,
apply to a broad range of systems that follow this scenario,
which can be further enriched when the particle number is
not conserved. An interesting and timely application of our
work would consist of analyzing the one-particle density
matrix for the system that was experimentally realized
in Ref. [37].

We thank U. Schneider, R. Singh, and F. A. Wolf for very
insightful discussions.

(a)

(b)

(c)

(d)

FIG. 3 (color online). Evolution of the probability distribution
of the IPR for increasing system size (a) in the delocalized phase
(W ¼ 0.4), (b) close to the transition (W ¼ 3.0), and (c) deep in
the localized phase (W ¼ 8.0). The insets in (a) and (c) show
examples of the natural orbitals. (d) Average participation ratio
h1=IPRi ¼ ξ of the natural orbitals as a function of disorder
strength. In the localized phase ξ is independent of the system
size, while for small disorder it saturates at ξ ≈ L=2. (Inset)
Average participation ratio as a function of interaction strength V
for several values of disorder strength (L ¼ 16).
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