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Abstract
Entanglement has developed into an essential concept for the characterization of phases and phase
transitions in ground states of quantummany-body systems. In this workwe use the logarithmic
negativity to study the spatial entanglement structure in the transverse-field Ising chain both in the
ground state and at nonzero temperatures. Specifically, we investigate the entanglement between two
disjoint blocks as a function of their separation, which can be viewed as the entanglement analog of a
spatial correlation function.We find sharp entanglement thresholds at a critical distance beyond
which the logarithmic negativity vanishes exactly and thus the two blocks become unentangled, which
holds even in the presence of long-ranged quantum correlations, i.e., at the system’s quantum critical
point. Using time-evolving block decimation, we explore this feature as a function of temperature and
size of the two blocks and present a simplemodel to describe our numerical observations.

1. Introduction

Entanglement plays a central role in quantummany-body theory. Exotic quantumphases such as spin liquids
[1, 2], topological [3, 4], ormany-body localized systems [5–8]find their characterization in their entanglement
properties.Moreover, quantumphase transitions are signaled by a universal entanglement contribution
determined solely by the universality class of the transition [9–14]. This can be used to detect quantumphase
transitionswithout prior knowledge on the nature of the transition [15], e.g., the order parameter, since
entanglement is a general system-independent quantity. In the ongoing efforts to characterize quantummany-
body systems via their entanglement properties, the entanglement entropy,measuring the entanglement
between a subsystem and its remainder, is taking over a key role. However, amajor limitation of the
entanglement entropy is that it is a valid entanglementmeasure only for pure states. This is a particular challenge
in view of experiments where thermal excitations or other imperfections leading tomixed states are generally
unavoidable. Nevertheless, recent works on quantum simulators have demonstrated that entanglement in
quantummany-body systems can be accessible in experiments. In systems of trapped ions, full-state
tomography provides access to various entanglementmeasures [15–20]. In ultra-cold atoms it is possible to
measure Renyi entropies [21] as also demonstrated in experiments [22, 23]. Recent theoretical works have
outlined new approaches formeasuring entanglement using unitary n-designs [24, 25] ormachine learning
techniques [26].

In this work, wemap out the spatial entanglement structure of a low-dimensional quantum system, the
transverse-field Ising chain, both in the ground state and in thermal states. For this purpose we use the
logarithmic negativity [27–31], which sharesmany of the central features of the entanglement entropy in pure
states, such as the area law for ground states of gappedHamiltonians [32–34] or the aforementioned universal
contribution appearing at quantum critical points [12, 35, 36]. In contrast to the entanglement entropy,
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however, the logarithmic negativity remains an entanglementmeasure also formixed states [12, 36]. In order to
obtain information about the spatial entanglement structure, we study the logarithmic negativity of two disjoint
blocks of identical sizeℓ as a function of their separation d, which can be viewed as the entanglement analog to a
conventional quantum correlation function. For an illustration of our setup see figure 1(a).Wefind that for any
fixed sizeℓ of the two blocks there appears a sharp entanglement threshold *d beyondwhich the logarithmic
negativity vanishes identically. For larger distance than *d the two blocks become unentangled, accordingly, as
measured by the logarithmic negativity. Infigure 1(b)we show the results for the entanglement threshold *d as a
function ofℓ for different parameters of the transverse-field Ising chain, where one can see that the spatial extent
of entanglement is restricted to rather short distances evenwhen the system resides at the quantumphase
transitionwhere quantum correlations are long-ranged.

While for the case where the two blocks consist of single qubits this result is well known [37–41], here we
study systematically the crossover from the single-particle to themulti-particle case.We compute the
logarithmic negativity numerically for large systems using the time-evolving block decimation (TEBD). In
addition, we develop a simple effectivemodel explaining our numerical observations.

This paper organized as follows: in section 2we start with an introduction to the logarithmic negativity. In
section 3we introduce the transverse-field Ising chain forwhichwe study the entanglement thresholds. The
method, that we use for our numerical simulations, is described in detail in section 4. Afterwardswe present our
results in section 5. First, we consider the ground state properties in section 5.1 for an extensive range of system
parameters and block sizes. Afterwards, we investigate how thermalfluctuations affect the entanglement in
section 5.2. In section 6we introduce a simplemodel of the reduced densitymatrix which captures themain
features of the decay of the logarithmic negativity observed in section 5.We end ourworkwith discussions and
conclusions in the section 7.

2. Logarithmic negativity

The aimof this work is to study the spatial structure of entanglement in equilibrium states of the transverse-field
Ising chain as depicted infigure 1. The entanglement entropy, which is the paradigmatic entanglementmeasure
for the characterization of quantummany-body systems in ground states, cannot be used for that purpose since
it can only access the entanglement between a subsystem and its remainder, but not the entanglement between
two subsystems. The entanglement entropy of two distant blocks with the remainder has been studied already in
the literature [42–44]. Here, we use the logarithmic negativity  to quantify the entanglement between two
distant blocks.

Let us denote by ρ the densitymatrix of the system, which can be either pure ormixed. To compute the
logarithmic negativity, it is necessary to access the reduced densitymatrix ρA,B of two subsystemsA andBwhich
can be obtained from ρ by tracing out all the degrees of freedomnot belonging toA or toB:

Figure 1. (a) Illustration of the setup used in ourwork.We consider two spatial regionsA andB in a large chain each ofwhich contains
ℓ sites. The two regions are separated by a distance d, illustrated here forℓ=4 and d=5. (b)Results for the entanglement threshold
*d beyondwhich distance the logarithmic negativity vanishes.We show *d as a function of block sizeℓ for the ground state (GS) and
for a thermal state at the inverse temperature βJ=25. Forℓ=5 in the ground state we can only give a lower bound on *d whichwe
indicate in this plot by adding an error bar.
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r r= ( )Tr . 1A B AB,

Here, TrAB denotes the trace over the complement AB ofA andB. The reduced densitymatrix ρA,B can be
represented as

år m n= ñá Ä ñá
m n

m n∣ ∣ ∣ ∣ ( )C m n , 2A B

m n

m n,
,
,

,
,

where mñ∣ and nñ∣ label the basis states of the localHilbert space A of subsystemA, and ñ∣m and ñ∣n of B

accordingly. m nCm n,
, are the coefficients given by m r n= á ñm n ∣ ∣C m n, ,m n A B,

,
, .

The logarithmic negativity is an entanglementmeasure based on the positive partial transpose (PPT)
criterion [45, 46], which provides a necessary condition for ρAB to be separable and therefore to contain no
entanglement. Central to the PPT criterion is the partial transpose operationTB performed on one of the two
subsystems,B say:

år r m n= Ä = ñá Ä ñá
m n

m n[ ] ∣ ∣ ∣ ∣ ( )I T C m n , 3A B
T

A B A B

m n

n m, ,
,
,

,
,B

which leaves the basis states inA unchanged but performs a transpose onB. In the end, this operation is
equivalent to m n m nC Cm n n m,

,
,
, when comparing equation (2)with (3).While the eigenvalues of ρA,B are probabilities

and therefore non-negative real numbers, this is not necessarily the case for the partially transposed rA B
T

,
B .When

ρA,B is separable and therefore contains no entanglement, the eigenvaluesλ of rA B
T

,
B have to be non-negative,

which is the aforementioned PPT criterion. In turn, thismeans that in case there exists a negative eigenvalue of
rA B

T
,

B , the reduced densitymatrix ρA,B has to be entangled. The logarithmic negativity  quantifies towhich

extent the partially transposed densitymatrix rTB between two subsystems fails to be non-negative.More
specifically,  is defined as

 år l l= = + -
l

 
⎡
⎣⎢

⎤
⎦⎥(∣ ∣ ) ( )log log 1 , 4T

2 1 2
B

where . 1denotes the trace norm, andλ the eigenvalues of rAB
TB . In general, the PPT criterion is only a necessary

but not a sufficient criterion for entanglement, i.e., theremight be states that signal a vanishing logarithmic
negativity that are, however, not separable. In this context it is important that  constitutes an upper bound to
the distillable entanglement [47]. A vanishing  thereforemeans that such a Bell pair distillation is not possible.

For quantummany-body systems the logarithmic negativity has been studied extensively in the literature
[27–29, 45, 48–53]. In particular, it has been found that  displays the same universal contributions at
quantum critical points [12, 35, 36, 54], as does the entanglement entropy [13, 33, 35]. In particular, the
logarithmic negativity for two adjacent large blocks of sizeℓ1 andℓ2 becomes [35, 54]

 ~
+

⎡
⎣⎢

⎤
⎦⎥

ℓ ℓ
ℓ ℓ

( )c

4
ln , 51 2

1 2

with c the central charge of the corresponding conformal field theory, which is a universal property of the
underlying quantumphase transition. For  ¥ℓ2 , a situationwhich is equivalent tomeasuring the
entanglement between a subsystem and its remainder, one obtains  ~ ℓ( ) ( )c 4 log 1 . The entanglement
entropy has been intensively studied analytically [13, 55–57] and numerically [50, 58–61] for the ground state of
the 1D transverse Isingmodel. On general grounds the entanglement entropy is characterized by an area law
[33, 34, 62], although at the critical point a logarithmic dependence on the sizeℓ1 emerges leading to
~ ℓ( ) ( )S c 3 log ,1 which has the same functional dependence as the logarithmic negativity.
In the case of disjoint blocks, the setup thatwe aim to address in this work,much less is known in general.

Using conformal field theory it is possible to prove that the logarithmic negativity is a scale-invariant quantity at
the critical point [35, 54, 63, 64]. Specifically,  is a function only of the dimensionless quantity

= - -
- -

( )( )
( )( )

y v u v u

u u v v
1 1 2 2

2 1 2 1
, where u1, v1 are, respectively, the left and right edges of thefirst block, and u2, v2 of the second

block.
One case that has been studied already extensively is when each of the two blocks contains a single spin

[37–41]. Then, the entanglement between the two spins exactly vanishes beyond a distance of a few lattice sites, a
phenomenon that has been termed ‘entanglement sudden death’ [65, 66]. How entanglement behaves for
disjoint blocks larger than a single spin, is, however, not yet known.

In view of the sudden drop towards vanishing entanglement known for the single spin case, we introduce in
the following the notion of the entanglement threshold *d .We define *d to be themaximumdistance d between
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two subsystems such that the two systems remain entangled. It is themain goal of this work to study this
entanglement threshold in the transverse-field Ising chain5.

3. Themodel

Themodel we consider is the one-dimensional Isingmodel with a transverse field (TFIM)described by the
followingHamiltonian:

å ås s s= - +
=

-

+

⎛
⎝⎜

⎞
⎠⎟ ( )H J h

1

2
, 6

i

L

i
x

i
x

i

L

i
z

1

1

1

where J denotes the spin–spin coupling, h the transverse field and s ( )
i
x z the Paulimatrices acting on the ith lattice

site. For convenience, we set the lattice spacing a=1 and choose open boundary conditions. Thismodel
undergoes a quantumphase transition [9, 67] at zero temperaturewhen J=h. For h<J, the system is in a
ferromagnetic phase, while for h>J in a paramagnetic one. The order parameter of the transition is the
magnetization s= å-m Lx l l

x1 along the spin–spin coupling directionwhich is nonzero in the symmetry-
broken phase and vanishes in the paramagnetic one. At nonzero temperature a symmetry-broken phase cannot
exist for this one-dimensional system according to theMermin–Wagner theorem [68–70].

In the followingwe study the entanglement properties of the transverse-field Ising chain as a function of
temperature. Therefore, in general, our system resides in a thermalmixed state given by the densitymatrix ρ of
the canonical ensemble:

r = b- ( )
Z

1
e , 7H

with b =
T

1
the inverse temperature,H theHamiltonian and = b-( )Z Tr e H the partition function.

4.Numerical approach: TEBD

Although the TFIM is exactly solvable bymapping the problem to a free fermionic theory using a Jordan–
Wigner transformation [9], the computation of the logarithmic negativity remains complicated. Themain
problems arise when performing the partial transpose operation, which in terms of the fermionic degrees of
freedomdoes not have a solvable structure [30, 48, 71]. Therefore, numerical techniques are required andwe use
for that purpose the TEBD in the following [72, 73]. Sincewe aim to study both the ground as well as nonzero
temperature states, we use both the pure statematrix product states (MPS) andfinite temperatureMPS
formalism [74–76]. As depicted infigure 2, the quantum state of the system can in general bewritten in anMPS
representation

åy s s sñ = ¼ ¼ ¼ ¼ ñ
s s

a a

a
s

a a
s

a
s

¼
¼ -

- -
∣ ∣ ( )T T T , 8i L, 1

L
L

i i
i

L
L

1
1 1

1
1

1 1

where each a a
s
-

T ,i i
i

1
is a rank-3 tensor, which therefore depends on the local state sñ∣ i . Note that indicesαi−1 and

αi refer to the bond dimension on site i and sums over them run from1 to itsmaximumvalue at each bond,χmax

withα0=αL=1.
We use imaginary time-evolution to compute both ground state and thermal state

y
t y
t y

y
y

ñ =
ñ
ñ

=
ñ
ñt t

t

t¥ ¥

-

-   
∣

( )∣
( )∣

∣
∣

( )
U

U
lim lim

e

e
, 9

H

HGS

with τ imaginary time. The TEBD algorithm relies on the Suzuki–Trotter decomposition [77] of the time-
evolution operatorU(τ). For this one first needs to decompose theU(τ) intoN small time steps dτ, i.e.,

t t t= =( ) [ ( )]U U Nd N whereN is a large enough that the time interval dτ=τ/N is small compared to any
internal time scale of the system.

We employ the second order Suzuki–Trotter decomposition

  t
t

t
t

t= +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( )U U U U Od

d

2
d

d

2
d , 10

i
i

i
i

i
i

even odd even

3

where t t= - +( ) ( )U d h dexp ii i i, 1 are the time-evolution operators of bond iwith

s s s s= - + ++ + +[ ( )]h J hi i i
x

i
x

i
z

i
z

, 1
1

2 1 1 acting on the bonds iwhich can be even or odd.

5
Sincewe study how the entanglement vanishes, it is important to estimate our numerical accuracy of the programwhich does not go below

10− 13.
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For thermal states, we need to purify the thermal densitymatrix. This is done by introducing new degrees of
freedom s s s¼ ¼ Î{¯ ¯ ¯ } Qi L1 as an auxiliary spin- 1

2
for each lattice site in theMPS representation [78]. For

infinite temperature = ¥T for each site i one can choose y s s s sñ = =  = ñ - =  = ñb=∣ (∣ ¯ ∣ ¯ ), ,i
i i i i0

1

2

which yields the full densitymatrix r =b=
- I2 L

0 after tracing out the auxiliary degrees of freedom. The thermal

state y ñb∣ can be obtained from y ñb=∣ 0 with imaginary time-evolution, y yñ = ñb
b

b
-

=∣ ∣e H 2
0 . In this way one can

compute the thermal densitymatrix by tracing out the auxiliary degrees of freedomas r y y= ñáb b b∣ ∣TrQ .
TheMPS representation of thermal states can be constructed as for pure states butwith an extra index s̄i for

auxiliaryHilbert space for each site.

åy

s s s s s s

ñ= ¼ ¼

¼ ¼ ¼ ñ

b

a a

a
s s

a a
s s

a
s s

¼

s s
s s

¼
¼

-

-

-

∣

∣ ¯ ¯ ¯ ( )

¯ ¯

¯

¯ ¯

T T

T . 11i i L L

,

1 1

L
L
L

i i
i i

L

L L

1
1

1 1

1
1 1

1

1

To compute the logarithmic negativity for a generic state yñ∣ , we need access to the reduced densitymatrix
and its partial transpose. Therefore one needs to compute r y y= ñá∣ ∣and trace out those sites which are not
included in the blocksA andB. Note that in the case of thermal states the auxiliary degrees of freedommust be
traced out. The reduced densitymatrix and its partial transpose for both pure and thermal states will have the
same form. Figure 2 shows the reduced densitymatrix and its partial transpose usingMPS based diagrams.

å

r y y

s s s s s s

s s s s s s

= ñá

= ¼ ¼ ¼ ¼ ñ

´ á ¢ ¼ ¢ ¼ ¢ ¢ ¼ ¢ ¼ ¢
s s

s s s s
s s s s

¢Î
¼ ¢¼ ¢
¼ ¢¼ ¢

(∣ ∣)

∣ ( ) ( )

( ) ( ) ∣ ( )

ℓ ℓ

ℓ ℓ

{ }
( ) ( )
( ) ( )

ℓ ℓ

ℓ ℓC

Tr

,

, , 12

A B A B

A B
i A i B

i A i B

, ,

, ,
,
,

1 1

1 1

i i

B B

A A

1 1

1 1

Figure 2. (a)MPS representation of a quantum state yñ∣ and its structure at each site i. (b)Reduced densitymatrix representation of
two subsystemsA andB, i.e., ρA,B and its partial transpose rA B

T
,

B which is carried out in regionB. (c)MPS representation of the thermal
state y ñb∣ . Auxiliary degrees of freedom s̄i have been introduced to purify the thermal state. (d)Reduced thermal densitymatrix
between two regionsA andB. Note that all other degrees of freedoms have been traced out.
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where the coefficientmatrixC for pure states reads as

å= ¼ ¼s s s s
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and for thermal states reads as
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the partially transposed rA B
T

,
B is given by
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Note that in equation (15), the partial transpose operation is performed by acting on blockB by exchanging the
indices in the coefficientmatrixC.

In our calculations we consider a chain of length L=200, which is sufficiently large that boundary orfinite
size effects can be neglected for both ground state and nonzero temperature. The two blocks have the same sizeℓ
and are situated in themiddle of the chain, i.e., the positions of the left edge of each block are, respectively,

L d

2 2
, with d the distance between them. For the TEBD calculations we ensure that our results are converged

with respect to the bond dimensionχmax. In particular, wefind that in both the phases (h/J<1 or h/J>1),
χmax=32 is sufficient to get a converged results for block sizesℓ=1K 5. For larger values ofℓ>5 it is
difficult to go to higher values ofχmax due to largermemory requirement, however, we have checked carefully
that the ground states of the calculations are convergedwith respect to the chosenχmax values for all h/J, see
figure 3. For nonzero temperature, we employ a second order Suzuki–Trotter decompositionwith an imaginary
time step of δβ=0.005/J, to cool the system fromβ=0.0 down to the considered temperature b =

T

1 .

5. Results

After having presented our numerical techniques, wewill nowpresent our results. In section 5.1we discuss the
entanglement properties for the ground state, and afterwards in subsection 5.2, we consider the case of thermal
states.

5.1. Logarithmic negativity in ground states
The logarithmic negativity computed in the ground state of the TFIM is depicted in figure 3 for various values of
the transverse field h/J, from top to bottom, and several subsystem sizesℓ. Distance d=0 refers to the case of
the two blocks located directly next to each other, d=1 to the case where there is one site in between, and so on.

Let usfirst analyze the ferromagnetic phase described by h/J=0.8 and h/J=0.9. Forℓ=2, the
logarithmic negativity drops to zero at d*=2. By increasing the size of the blocks, the entanglement threshold
*d increases, whichmeans that the two blocks remain entangled over a longer distance. Up toℓ=4we can
accurately detect *d , while forℓ>4 the logarithmic negativity reaches the numerical precision in a smoothway
before the appearance of a sudden death of the entanglement,making it difficult to unambiguously extract *d .

Comparing the results of the entanglement threshold at criticality, h/J=1.0with h/J=0.8 and h/J=0.9,
we observe that forℓ=2 they have the same value * =d 2. On the other hand, the results start to differ
increasing the subsystem sizeℓ, as one can see forℓ=3 andℓ=4, where the logarithmic negativity drops to
zero at a substantially longer distance compared to the ferromagnetic phase. This reveals how the presence of the
long-ranged quantum correlations enhances the entanglement between two separated relatively large blocks. In
particular, forℓ>4 one obtains * >d 30, where the entanglement threshold is beyondwhat we can reach
reliably numerically.

For the paramagnetic phase we consider the fields h/J=1.5 and h/J=2.0.On general grounds, we see in
figure 3 that the logarithmic negativity drops to zero earlier compared to the cases h/J�1, leading to a smaller
entanglement threshold. For example, forℓ=2 the entanglement vanishes after one site separation * =d 1.
Moreover, we observe that there is a dependency of *d on the value of thefield h/J. For all the subsystem sizesℓ
considered, the higher thefield h the smaller the entanglement threshold *d .

All the three different regimes studied share the same behavior for the entanglement whenℓ=1. In the case
each block has a single spin, the logarithmic negativity vanishes unless the two sites are atmost next-nearest-
neighbors, i.e. * =d 1. The result obtained at criticality is particularly surprising since onemight expect that the
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long-ranged quantum fluctuationswould lead also to long-ranged entanglement.Wefind that the strong
quantum character of the critical point becomesmanifest for large block sizes. In order to understand the sharp
entanglement threshold forℓ=1we provide a simplemodel system in section 6.

5.2. Logarithmic negativity at nonzero temperature
Switching from zero tofinite temperature, thermal excitations start to play an important role. For example, the
one-dimensional TFIMhas a phase transition only at zero temperature [79]. Thismeans that the correlation
length stays finite through all values of the transverse field h/J.

Figure 4 shows the logarithmic negativity as a function of temperatureT/J and thefield h/J.We consider a
chain of L=200 lattice sites, and each of the two partitions containsℓ=4 spins. Fromfigures 4(a) to (d)we
increase the distance d between the two partitions from d=0 to d=3.Generally we notice that the higher the
temperature, themore entanglement is suppressed. This observation is in agreementwith the expectation that
thermalfluctuations tend to suppress quantum coherence and consequently entanglement. In the opposite
regime of low temperature, the logarithmic negativity shows a peak in the vicinity of the quantumphase
transitionwhich also survives at nonzero temperature.

Wewill now study quantitatively how the logarithmic negativity decays by increasing the distance d between
the two partitions atfinite temperature. Figure 5 shows  as a function of the distance d for different values of
the inverse temperatureβJ at afixed h/J=1.0. At very large temperature, hereβJ=5.0 infigure 5(a), the
thermalfluctuations have a strong influence on the entanglement. For the partitions of sizeℓ=1 the
logarithmic negativity drops to zero immediately, i.e., * =d 0means two spins are entangled onlywhen they are
nearest-neighbors. Forℓ�2, the logarithmic negativity vanishes after the separation of one lattice site,
i.e., * =d 1.

Figure 3. Logarithmic negativity as a function of distance between two blocks of sizeℓ fromℓ=1 toℓ=7 in the ground state of the
TFIM. In order to avoid finite size effects, the two partitions are centered at themiddle of the chainwith L=200 lattice sites with
maximumbond dimensionχmax=32.We show  for different values of the transverse field h/J from h/J=0.8 (a) and h/J=0.9
(b) (ferromagnetic phase) to h/J=1.0 (c) (criticality) to h/J=1.5 (d) and h/J=2.0 (d) (paramagnetic phase). The dashed lines in
(b) and (c) forℓ=6, 7 show  forχmax=24.
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By reducing the temperature toβJ=15, thermal fluctuations remain sufficiently strong to restrict the
entanglement threshold considerably. As shown infigure 5(b), forℓ=1, the logarithmic negativity between
two blocks vanishes as soon as the distance between them ismore than zero site. Forℓ=2 andℓ=3 however
two blocks remain entangled for a fewmore sites but of substantially shorter distance compared to the ground
state. The thermal fluctuations show their dominant effect better for larger block size. One can see this by
looking at the casesℓ=4 andℓ=5. Both drop to zero at approximately the same distance. Reducing the
temperature further, the effect of thermal fluctuations becomes smaller as expected. For example infigure 5 for
βJ=25.0 andβJ=35.0, the logarithmic negativity forℓ=4 andℓ=5 drops to zero at different threshold
distances as a consequence of the less dominant effect of thermalfluctuations. The value of *d for l=3 has
converged for theseβJʼs but not forℓ=4, 5.

The behavior of the entanglement threshold as function of temperature for differentℓ and transverse field is
shown infigure 6. Away from criticality the entanglement threshold saturates quickly to a constant value for each

Figure 4.Color code plot of  between two subsystemsA andBwith size =ℓ 4 as a function of temperature and transverse field for
a chain of L=200 spins. Each panel is for a different distance d. from d=0 (a) to d=3 (d). Note that for the panels from (b) to (d)
 are shown in a log-scale.

Figure 5. Logarithmic negativity  as a function of distance d at h/J=1.0 for various temperatures fromβJ=5.0 toβJ=50.0 for
system size of L=200.
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ℓ, seefigures 6(a) and (c).With reducing temperature, *d does not change and reaches to its final value at ground
state which is an upper bound for *d atfiniteT. Let us point out that the yellow curve in figure 6(a)
corresponding toℓ=3, seems to reach convergence already atβJ=50.0. Nevertheless, this value differs by one
lattice site from the result obtained for the ground state. This is due to how closewe are to the ground state. The
thermal activation of the lowest energy excitation is proportional to b-e s with s the gap. For h/J=1.0, we have
s=2π/L such that ~b- -e 10s 1whichmeanswe need to be ofmuch lower temperature to suppress thermal
excitations.

At criticality, the entanglement threshold *d increases with decreasing temperature, figure 6(b). For small
ℓ�2 the value of *d converges to its value in the ground state at some temperature. The convergence to the
entanglement threshold in the ground state becomes slower for large value ofℓ. In other words *d increases by
increasingℓ and reducing the temperature, seefigure 6(b) forℓ=3–5.

6. Entanglement threshold fromeffective two-level systems

In this sectionwewant to shed some light on the sudden drop of the logarithmic negativity for two spins by
providing a simple effectivemodel. Of central importance in this analysis is the possibility of writing, on general
grounds, anyHermitian operator of a L-spin system in terms of direct products of Pauli operators. In particular,
we focus on the densitymatrix since it plays themain role in computing the logarithmic negativity:
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¼ ( )... , 16
n n

n n l
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where am=0, x, y, z, and s =0
2 the 2×2 unitmatrix. From equation (16), the densitymatrix is fully

determined by the values of the correlation functions since r r s s= Ä Ä¼ [ ]Tr ...n n l
a

l
a

, , L L

L

1 1

1 .
The case we study is a two-spin problem.We consider two spins and label the position of one of them at site 1

and the other at site 1+d. This choice permits us to deal with a small number of correlation functions, leading
to a simple and intuitive analytical condition for having non-vanishing logarithmic negativity. In particular we
focus on the paramagnetic phase, where the structure of the reduced densitymatrix allows us to derive a
condition for nonzero logarithmic negativity from an effective two-level system.

6.1. Reduced densitymatrix in the paramagnetic phase
In the paramagnetic phase, the 4×4 reduced densitymatrix ρA,Bwritten in the basis  ñ  ñ  ñ  ñ{∣ ∣ ∣ ∣ }, , , , , , , ,
is characterized by having nonzero entries only on the diagonal and the anti-diagonal:

Figure 6.Entanglement threshold *d for different subsystem sizeℓ for both the ground state and thermal states, for three different
transverse fields h. As temperature reduces, *d saturates to a constant value. The value of *d in the ground state (GS) has been shown
as an upper bound for the *d at nonzero temperature.
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The reason for the vanishing of the othermatrix elements is symmetries of theHamiltonian, as one can directly
see fromwriting those entries in terms of the respective two-point correlation functions. For example, let us
consider r r r r r= - + -( ) ( )1, 2 iA B x z x y z y, 0, , 0, , , inwhich r s s= á ñ++

+
a a

a
d

a
, 1 1d

d

1 1

1 1 . Sincewe are evaluating the
correlation functions in the ground state and the system is symmetric under time-reversal, it follows that
ρ0,y=ρz,y=0.Moreover, in the paramagnetic phase where the ground state does not break the 2 symmetry,
we also have r r= = 0x z x0, , . Taking into account all these considerations we conclude that ρA,B(1, 2)=0 and
similar argumentations hold for the othermatrix elements r r( ) ( )1, 3 , 2, 4A B A B, , and ρA,B(3, 4).

The partial transpose of the densitymatrix is therefore determined by two uncoupled effective two-level
systems:
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For the sake of simplicity, let us focus only on one two-level system, since both of themhave the same features:

r
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=
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Let us denote with δ=ρA,B(2, 3) the coupling between the two levels, with *E the eigenvalues of thematrix(19)
andwith r r= =- +( ) ( )E E1, 1 , 4, 4A B A B, , the unperturbed ones. For an illustration see figure 7.

The picture of the two-level system in equation (18) gives a simple physical explanation for the spatial
behavior of the logarithmic negativity. Although the reduced densitymatrix ρA,B always has positive eigenvalues
since it is a semi-positively defined operator, the partially transposedmatrix rA B

T
, can have negative ones, when at

least one of the two two-level systems has negative eigenvalues. This can lead to a non-vanishing logarithmic
negativity.

6.1.1. Condition for non-vanishing logarithmic negativity
With increasing δ the splitting betweenE+ andE− increases, which for sufficiently large δ turns one of the
eigenvalues negative. In order to obtain amore quantitative description of the behavior of the logarithmic
negativity, we solve the eigenvalue problemof thematrix(19), and similarly for the other two-level system,
searching for the conditionswhich lead to a negative eigenvalue and therefore to a non-vanishing logarithmic
negativity. As a result we obtain the following inequalities:

Figure 7.Eigenvalues *E of the partially transposed reduced densitymatrix r1
TLS in equation (19), as a function of δ.While the full

lines correspond to *E , the dotted ones correspond to the unperturbed eigenvaluesE±.When δ is sufficiently large such that the
eigenvalue *-E becomes negative, the logarithmic negativity starts to take a nonzero value.
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r r r>( ) ( ) ( ) ( )2, 3 1, 1 4, 4 , 20A B A B A B,
2

, ,

r r r>( ) ( ) ( ) ( )1, 4 2, 2 3, 3 . 21A B A B A B,
2

, ,

Equations (20) and (21) give a quantitative statement concerning how strong the couplings ρA,B(2, 3), ρA,B(1, 4)
must be to lower the eigenvalue below zero.

To achieve a better physical intuition for the behavior of the logarithmic negativity as a function of distance,
we express the conditions (20) and (21) in terms of the two-point correlation functions using the prescription in
equation (16). These functions, in some particular limiting cases, are described by universal behaviors allowing a
simple analysis of the conditions(20) and (21) and consequently it is possible to have a clear idea on the spatial
structure of the logarithmic negativity for two spins. For simplicity we consider only equation (20), but similar
observations hold for equation (21). Since

r r r= +( ) ( )2, 3 22A B x x y y, , ,

r r r r= + - -( ) ( )1, 1 1 23A B z z z z, , 0, ,0
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Equation (20) reads
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Equation (25) can be further simplified noting that the translational invariance of the system implies ρ0,z=ρz,0.
Moreover, the terms rx y, and ρy,x vanish because the entries of the reduced densitymatrix ρA,B have to be real due
to time-reversal symmetry. Using all this information, equation (25) simplifies to
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In otherwords, using the definition of the coefficients: r s s r s s= á ñ = á ñ+ +,x x
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we can rewrite equation (26) as following
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6.1.2. Vanishing logarithmic negativity at large distance
From equation (26) one can directly see the vanishing logarithmic negativity when the two spins are very far
apart. In this regime, the correlation functions follow a generic behavior:
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Thus, in the limit  ¥d , both ρx,x and ρy,y go to zero and therefore the inequality (26) cannot be satisfied
leading to a vanishing logarithmic negativity. In addition, the two-level systemdescription is able to predict that
the logarithmic negativity is zero not only in the singular point = ¥d , but in an interval of nonzero extent
< ¥d . For a general field h in the paramagnetic phase, >h hc, both themagnetization and correlation along z

arefinite but smaller than one. Consequently, the diagonal elements in thematrix(19) are strictly larger than
zero, as one can realize from equations (23) and (24). In order to argue the existence of afinite interval of
distanceswhere the logarithmic negativity vanishes, let usfirst begin from the case where the two spins are
infinitely far apart from each other,meaning that thematrix(19) is diagonal because of the exponential
suppression of the off-diagonal elements announced by equations (22), (28) and (29). As the distance ddecreases,
the off-diagonal element ρA(2, 3)=δ starts to have a nonzero value, affecting perturbatively the eigenvalue of
thematrix(19). In particular, using perturbation theory in δ, the shift of the eigenvalues is proportional to the
square of the coupling of the two-level system δ

* d
= 

- 
+ -

( )E E
E E

, 31
2

supposing thatE± are nondegenerate. Let us point out that the unperturbed eigenvalues E±, appearing in
equation (31), cannot assumenegative values since they correspond to the diagonal elements of ρA,Bwhich are
probabilities. As a consequence, δmust be sufficiently large tomake at least one eigenvalue negative. This can
occur only when the distance between the two spins is less than a certain threshold, < ˜d d , since the strength of δ
is exponentially suppressedwith d as suggested by equations (22), (28) and (29).

While the condition for nonzero logarithmic negativity in equation (26) holds also for small distances d, the
exponential structures of the correlation functions in equations (28), (29) are no longer valid since they describe
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the asymptotic behavior in the limit  ¥d . Nevertheless, the strength of δ decreases with d, as we observe from
the nonzero entanglement between the two spins in the paramagnetic phase at short-distance, seefigure 3 panels
(d) and (e).Moreover, nonzero entanglement between two spins at short distances was already shown in a
variety of works [37–41].

6.2. Reduced densitymatrix at the critical point
After having discussed the threshold *d within aminimal physicalmodel in the paramagnetic phase, we now
aim to outline howour results extend also to the critical point. Importantly, the two-level systemdescription for
the reduced densitymatrix introduced in the previous section holds also at criticality, sincewe still have that the
matrix elements ρ0,x=ρz, x=ρ0,y=ρz,y vanish at the quantumphase transition. Only in the symmetry-
broken phase, some of the elements become nonzero, such as r x0, which contains information about the order
parameter.

Themain difference to the paramagnetic phase consists in the functional formof the order parameter
correlation function(28). Specifically, it exhibits a power law decay instead of an exponential one: r ~ h-dx x, ,
with η the critical exponent of the correlation functionwhose value depends on the universality class of the
problem. For the 1D transverse field Isingmodel we have η=1/4.

According to our arguments from the previous section, we could deduce the existence of an entanglement
threshold *d from the fact that the correlation functions decay to zero in the long-distance limit. This property
still persists at the critical point, although correlations are now long-ranged, of course. Nevertheless, we can
follow the same considerations as in the previous section to show that afinite *d exists. However, due to the
long-ranged correlations one can generically expect that *d occurs at a larger value compared to the
paramagnetic phase.

7.Discussion and conclusions

In this workwe have studied the spatial entanglement structure of the transverse-field Ising chain at zero and
nonzero temperatures. Specifically, we have investigated the logarithmic negativity between two disjoint blocks
of equal sizeℓ as a function of their separation, which is an entanglement analog to a quantum correlation
function.While the cases ofℓ=1 and of large blocks has been considered already in the literature [37–41], we
studied the crossover regime between those limits.

We have found that for anyfixed sizeℓ of the blocks there exists an entanglement threshold at a distance *d
beyondwhich the logarithmic negativity vanishes identically. This holds across thewhole phase diagramof the
system including also the quantum critical point where the system exhibits long-ranged quantum correlations.
The influence of temperature onto the spatial entanglement structure asmeasured by the logarithmic negativity
depends crucially on the sizeℓ of the blocks. The larger *d (for increasingℓ) themore important the influence of
temperature, cutting off long-range entanglement.

For small blocksℓ the entanglement threshold *d appears on short distances on the order of a few lattice
spacings even at the quantum critical point. In this case the precise value of *d is determined by nonuniversal
short-distance properties that depend on themicroscopic details of themodel. However, using a simple effective
model we have found for the caseℓ=1 that the existence of the threshold *d can be derived solely from the
universal long-distance properties.

A vanishing logarithmic negativity for blocks of sizeℓ=1 implies that the two corresponding qubits are
unentangled, because the PPT criterion (whose violation ismeasured by the negativity) for the separability of a
quantum state is not only necessary but also sufficient. For larger blocksℓ>1 the PPT criterion is not sufficient
anymore, such that a vanishing logarithmic negativity at distances larger than *d does not necessarily imply that
the two blocks are completely unentangled. Thus, we cannot exclude that there exist othermeasures signaling
nonzero entanglement. However, it is important to note that the logarithmic negativity gives a bound on the
distillable entanglement, such that a vanishing logarithmic negativity implies that no Bell pairs can be extracted
from the state.

Atfirst sight the already known result of afinite entanglement threshold * < ¥d forℓ=1 at the critical
pointmight not complywith expectations originating from strong quantum correlations or thewell-established
violation of the area law for the entanglement entropy. The results of ourwork provide a quantitative description
of the crossover fromℓ=1 toℓ?1 upon increasingℓ.

We have studied the spatial entanglement structure for the transverse-field Ising chain so that it is a natural
question towhich extent our results extend to a broader class of systems. The effectivemodel for the reduced
densitymatrix atℓ=1, whichwe used to argue about the existence of an entanglement threshold, can be
straightforwardly applied to othermodels as well, independent of the dimension provided the blocks consist of
spin-1/2 degrees of freedom and the system resides in a paramagnetic phase. Our conclusions also hold for the
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critical point whenever the quantum correlations are long-ranged along one particular direction. Thismight
change, for example, in the case the transition is associatedwith a brokenU(1) instead of 2 symmetry. For
larger block sizesℓ>1 the situation ismuch less clear on general grounds and deserves a further investigation.
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