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Abstract

Entanglement has developed into an essential concept for the characterization of phases and phase
transitions in ground states of quantum many-body systems. In this work we use the logarithmic
negativity to study the spatial entanglement structure in the transverse-field Ising chain both in the
ground state and at nonzero temperatures. Specifically, we investigate the entanglement between two
disjoint blocks as a function of their separation, which can be viewed as the entanglement analog of a
spatial correlation function. We find sharp entanglement thresholds at a critical distance beyond
which the logarithmic negativity vanishes exactly and thus the two blocks become unentangled, which
holds even in the presence of long-ranged quantum correlations, i.e., at the system’s quantum critical
point. Using time-evolving block decimation, we explore this feature as a function of temperature and
size of the two blocks and present a simple model to describe our numerical observations.

1. Introduction

Entanglement plays a central role in quantum many-body theory. Exotic quantum phases such as spin liquids
[1, 2], topological [3, 4], or many-body localized systems [5—8] find their characterization in their entanglement
properties. Moreover, quantum phase transitions are signaled by a universal entanglement contribution
determined solely by the universality class of the transition [9—14]. This can be used to detect quantum phase
transitions without prior knowledge on the nature of the transition [15], e.g., the order parameter, since
entanglement is a general system-independent quantity. In the ongoing efforts to characterize quantum many-
body systems via their entanglement properties, the entanglement entropy, measuring the entanglement
between a subsystem and its remainder, is taking over a key role. However, a major limitation of the
entanglement entropy is that it is a valid entanglement measure only for pure states. This is a particular challenge
in view of experiments where thermal excitations or other imperfections leading to mixed states are generally
unavoidable. Nevertheless, recent works on quantum simulators have demonstrated that entanglement in
quantum many-body systems can be accessible in experiments. In systems of trapped ions, full-state
tomography provides access to various entanglement measures [15-20]. In ultra-cold atoms it is possible to
measure Renyi entropies [21] as also demonstrated in experiments [22, 23]. Recent theoretical works have
outlined new approaches for measuring entanglement using unitary n-designs [24, 25] or machine learning
techniques [26].

In this work, we map out the spatial entanglement structure of alow-dimensional quantum system, the
transverse-field Ising chain, both in the ground state and in thermal states. For this purpose we use the
logarithmic negativity [27-31], which shares many of the central features of the entanglement entropy in pure
states, such as the area law for ground states of gapped Hamiltonians [32—34] or the aforementioned universal
contribution appearing at quantum critical points [12, 35, 36]. In contrast to the entanglement entropy,
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Figure 1. (a) lllustration of the setup used in our work. We consider two spatial regions A and B in a large chain each of which contains
¢ sites. The two regions are separated by a distance d, illustrated here for # = 4and d = 5. (b) Results for the entanglement threshold
d* beyond which distance the logarithmic negativity vanishes. We show d* as a function of block size £ for the ground state (GS) and
for a thermal state at the inverse temperature 5] = 25.For ¢ = 5 in the ground state we can only give alower bound on d* which we
indicate in this plot by adding an error bar.

however, the logarithmic negativity remains an entanglement measure also for mixed states [12, 36]. In order to
obtain information about the spatial entanglement structure, we study the logarithmic negativity of two disjoint
blocks of identical size £ as a function of their separation d, which can be viewed as the entanglement analog to a
conventional quantum correlation function. For an illustration of our setup see figure 1(a). We find that for any
fixed size # of the two blocks there appears a sharp entanglement threshold d* beyond which the logarithmic
negativity vanishes identically. For larger distance than d* the two blocks become unentangled, accordingly, as
measured by the logarithmic negativity. In figure 1(b) we show the results for the entanglement threshold d* as a
function of ¢ for different parameters of the transverse-field Ising chain, where one can see that the spatial extent
of entanglement is restricted to rather short distances even when the system resides at the quantum phase
transition where quantum correlations are long-ranged.

While for the case where the two blocks consist of single qubits this result is well known [37-41], here we
study systematically the crossover from the single-particle to the multi-particle case. We compute the
logarithmic negativity numerically for large systems using the time-evolving block decimation (TEBD). In
addition, we develop a simple effective model explaining our numerical observations.

This paper organized as follows: in section 2 we start with an introduction to the logarithmic negativity. In
section 3 we introduce the transverse-field Ising chain for which we study the entanglement thresholds. The
method, that we use for our numerical simulations, is described in detail in section 4. Afterwards we present our
results in section 5. First, we consider the ground state properties in section 5.1 for an extensive range of system
parameters and block sizes. Afterwards, we investigate how thermal fluctuations affect the entanglement in
section 5.2. In section 6 we introduce a simple model of the reduced density matrix which captures the main
features of the decay of the logarithmic negativity observed in section 5. We end our work with discussions and
conclusions in the section 7.

2. Logarithmic negativity

The aim of this work is to study the spatial structure of entanglement in equilibrium states of the transverse-field
Ising chain as depicted in figure 1. The entanglement entropy, which is the paradigmatic entanglement measure
for the characterization of quantum many-body systems in ground states, cannot be used for that purpose since
it can only access the entanglement between a subsystem and its remainder, but not the entanglement between
two subsystems. The entanglement entropy of two distant blocks with the remainder has been studied already in
the literature [42—44]. Here, we use the logarithmic negativity £y, to quantify the entanglement between two
distant blocks.

Let us denote by p the density matrix of the system, which can be either pure or mixed. To compute the
logarithmic negativity, it is necessary to access the reduced density matrix p4 p of two subsystems A and B which
can be obtained from p by tracing out all the degrees of freedom not belonging to A or to B:
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Pap = T1aB p. M

Here, Trzg denotes the trace over the complement AB of A and B. The reduced density matrix p, g can be
represented as

Pap = ; Chonlp) (vl @ |m)(nl, )
m,n

where | ) and |v) label the basis states of the local Hilbert space Hj4 of subsystem A, and |m) and |n) of Hip
accordingly. C}/ are the coefficients given by C, = (u, m|p, plv, n).

The logarithmic negativity is an entanglement measure based on the positive partial transpose (PPT)
criterion [45, 46], which provides a necessary condition for p,p to be separable and therefore to contain no
entanglement. Central to the PPT criterion is the partial transpose operation T performed on one of the two

subsystems, B say:

Pl =1 ® Tslpyp = > Cliwlu) (| & |m) (n, 3)
[V

which leaves the basis states in A unchanged but performs a transpose on B. In the end, this operation is
equivalentto C,, — C when comparing equation (2) with (3). While the eigenvalues of p, s are probabilities
and therefore non-negative real numbers, this is not necessarily the case for the partially transposed pz;f‘ 5 When

pa,pis separable and therefore contains no entanglement, the eigenvalues A of pz;ﬂ, 5 have to be non-negative,
which is the aforementioned PPT criterion. In turn, this means that in case there exists a negative eigenvalue of
pz;'i > thereduced density matrix p, s has to be entangled. The logarithmic negativity £ quantifies to which
extent the partially transposed density matrix p’s between two subsystems fails to be non-negative. More
specifically, Ex is defined as

Ev = log, ||p% | = 10g2[1 + > (A = )\)], 4)
A

where ||.||; denotes the trace norm, and A the eigenvalues of pZBB. In general, the PPT criterion is only a necessary
but not a sufficient criterion for entanglement, i.e., there might be states that signal a vanishing logarithmic
negativity that are, however, not separable. In this context it is important that £y constitutes an upper bound to
the distillable entanglement [47]. A vanishing €y therefore means that such a Bell pair distillation is not possible.

For quantum many-body systems the logarithmic negativity has been studied extensively in the literature
[27-29,45,48-53]. In particular, it has been found that £, displays the same universal contributions at
quantum critical points [12, 35, 36, 54], as does the entanglement entropy [13, 33, 35]. In particular, the
logarithmic negativity for two adjacent large blocks of size #; and £, becomes [35, 54]

c Ht,
Ev~—In , 5
Ny [fi+b’”z] ©)

with c the central charge of the corresponding conformal field theory, which is a universal property of the
underlying quantum phase transition. For £, — o0, asituation which is equivalent to measuring the
entanglement between a subsystem and its remainder, one obtains Ey ~ (¢/4)log(#). The entanglement
entropy has been intensively studied analytically [13, 55-57] and numerically [50, 58—61] for the ground state of
the 1D transverse Ising model. On general grounds the entanglement entropy is characterized by an area law
[33, 34, 62], although at the critical point a logarithmic dependence on the size #; emerges leading to
S ~ (¢/3)log(#), which has the same functional dependence as the logarithmic negativity.

In the case of disjoint blocks, the setup that we aim to address in this work, much less is known in general.
Using conformal field theory it is possible to prove that the logarithmic negativity is a scale-invariant quantity at
the critical point [35, 54, 63, 64]. Specifically, £y is a function only of the dimensionless quantity

y = 1 —u)(va — wp)

(2 — w) (v2 — v1)

block.

One case that has been studied already extensively is when each of the two blocks contains a single spin
[37-41]. Then, the entanglement between the two spins exactly vanishes beyond a distance of a few lattice sites, a
phenomenon that has been termed ‘entanglement sudden death’ [65, 66]. How entanglement behaves for
disjoint blocks larger than a single spin, is, however, not yet known.

In view of the sudden drop towards vanishing entanglement known for the single spin case, we introduce in
the following the notion of the entanglement threshold d*. We define d* to be the maximum distance d between

,where uy, v| are, respectively, the left and right edges of the first block, and u,, v, of the second
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two subsystems such that the two systems remain entangled. It is the main goal of this work to study this
entanglement threshold in the transverse-field Ising chain’.

3. The model

The model we consider is the one-dimensional Ising model with a transverse field (TFIM) described by the
following Hamiltonian:

-1 L

H= (]ZanfH + hZaf], 6)

i=1 i
where ] denotes the spin—spin coupling, 4 the transverse field and o7 ® the Pauli matrices acting on the ith lattice
site. For convenience, we set the lattice spacinga = 1 and choose open boundary conditions. This model
undergoes a quantum phase transition [9, 67] at zero temperature when ] = h.For h < J, the systemisina
ferromagnetic phase, while for b > Jin a paramagnetic one. The order parameter of the transition is the
magnetization m, = L', o7 along the spin—spin coupling direction which is nonzero in the symmetry-
broken phase and vanishes in the paramagnetic one. At nonzero temperature a symmetry-broken phase cannot
exist for this one-dimensional system according to the Mermin—Wagner theorem [68—70].

In the following we study the entanglement properties of the transverse-field Ising chain as a function of

temperature. Therefore, in general, our system resides in a thermal mixed state given by the density matrix p of
the canonical ensemble:

1
2

|-
= —e0H, 7
p 7 @)

with 8 = T the inverse temperature, H the Hamiltonian and Z = Tr (e~#H) the partition function.

4. Numerical approach: TEBD

Although the TFIM is exactly solvable by mapping the problem to a free fermionic theory using a Jordan—
Wigner transformation [9], the computation of the logarithmic negativity remains complicated. The main
problems arise when performing the partial transpose operation, which in terms of the fermionic degrees of
freedom does not have a solvable structure [30, 48, 71]. Therefore, numerical techniques are required and we use
for that purpose the TEBD in the following [ 72, 73]. Since we aim to study both the ground as well as nonzero
temperature states, we use both the pure state matrix product states (MPS) and finite temperature MPS
formalism [74-76]. As depicted in figure 2, the quantum state of the system can in general be written in an MPS
representation

V) = > T3 o TS o o Tk oy i .. o), 8

0j...0L
Qp...Qp

whereeach Tjj |, isarank-3 tensor, which therefore depends on the local state |0;). Note that indices c;_; and
«; refer to the bond dimension on site i and sums over them run from 1 to its maximum value at each bond, Y ax
withay = ap = 1.
We use imaginary time-evolution to compute both ground state and thermal state
—TH
) — tim UOW) ) )
oo [U@IM - o (e[|

with 7imaginary time. The TEBD algorithm relies on the Suzuki-Trotter decomposition [77] of the time-
evolution operator U(7). For this one first needs to decompose the U(7) into N small time steps d, i.e.,
U(t) = [U(dT = 7/N)]N where Nis alarge enough that the time interval dT = 7/N is small compared to any
internal time scale of the system.

We employ the second order Suzuki-Trotter decomposition

udn =[] u(d%) [[ U@n]] U,-(%) + 0(d7d), (10)

1
odd even

where U;(d7) = exp(—ih;,;d7) are the time-evolution operators of bond i with
hijt1=— % Uoiof,, + h(of 4+ o7, )]acting on the bonds i which can be even or odd.

Since we study how the entanglement vanishes, it is important to estimate our numerical accuracy of the program which does not go below
107,
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Figure 2. (a) MPS representation of a quantum state |¢)) and its structure at each site i. (b) Reduced density matrix representation of
two subsystems A and B, i.e., ps p and its partial transpose p 5 Which is carried out in region B. (c) MPS representation of the thermal
state [¢3). Auxlhary degrees of freedom &; have been 1ntroduced to purify the thermal state. (d) Reduced thermal density matrix
between two regions A and B. Note that all other degrees of freedoms have been traced out.

For thermal states, we need to purify the thermal density matrix. This is done by introducing new degrees of
freedom {5y ... 5; ... o1} € Qasanauxiliary spin-% for each lattice site in the MPS representation [78]. For
infinite temperature T = oo for each site i one can choose |1/)iﬁ:0> = %(kfi =15=10—log=15=1)
which yields the full density matrix p,_, = 271 after tracing out the auxiliary degrees of freedom. The thermal
state [1))3) can be obtained from |1/3_,) with imaginary time-evolution, |¢5) = e™7H/2|1/;5_). In this way one can
compute the thermal density matrix by tracing out the auxiliary degrees of freedom as p; = Trq|t;3) (¢5l.

The MPS representation of thermal states can be constructed as for pure states but with an extra index ; for
auxiliary Hilbert space for each site.

|¢6 Z TU]UI Tgx’ﬁ,a;
aL

01 oL
- Q-1

al 1I(J']O'l .. 0;0; ... O'L5'L>. (11)

To compute the logarithmic negativity for a generic state |1)), we need access to the reduced density matrix
and its partial transpose. Therefore one needs to compute p = [t)) (¢)| and trace out those sites which are not
included in the blocks A and B. Note that in the case of thermal states the auxiliary degrees of freedom must be
traced out. The reduced density matrix and its partial transpose for both pure and thermal states will have the
same form. Figure 2 shows the reduced density matrix and its partial transpose using MPS based diagrams.

Pa,B = Trm(l@ W’l)

_ (01...0 )5 (07 ”f)A o .
= Z C(Ul---o't’)&(o'l P | (o1 ... 0; ... Op)a, (01 ... G ... Op)p)
0;,0;€ {A,B}
/! ! ! ! ! !
X (0] oo TG eee Opdas (O] oo O o OB s (12)
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where the coefficient matrix C for pure states reads as

C(UI...J;)A,(J{...J})A: Z (T”‘TJH) (TS TU:T ) (T TJ/LT) (13)
(01...0¢)p,(01... 0B o ar o Qi1 Tl ai’l Tt ol P
0,0 5
(xll,{.aL,l
ooy
and for thermal states reads as
(01024 (01 .. 04 0101 o5 0;5; At 0L.0p OO T
Conamaoin = 2 Ta TG o (TE00, To 0 o (TERTHED. (19
oo ZTAB), -

oia),a1...aL — 1

! /
...

the partially transposed pZB) 5 is given by

T, (01... 02 )p5(0}...0),
Pip= Z C(n{i.ai)f;,(ai..‘o;); | (01 ... G ... Op)a> (O1 ... Gy ... O)p)
0,0;€(A,B) '

X (0] . 0o Oy (0) .. O oL | (15)

Note that in equation (15), the partial transpose operation is performed by acting on block B by exchanging the
indices in the coefficient matrix C.

In our calculations we consider a chain oflength L = 200, which is sufficiently large that boundary or finite
size effects can be neglected for both ground state and nonzero temperature. The two blocks have the same size
and are situated in the middle of the chain, i.e., the positions of the left edge of each block are, respectively,

% + %, with d the distance between them. For the TEBD calculations we ensure that our results are converged
with respect to the bond dimension X .. In particular, we find that in both the phases (h/] < 1 or h/] > 1),
Xmax = 32 issufficient to get a converged results for block sizes# = 1 ... 5. For larger values of # > 5itis
difficult to go to higher values of X .., due to larger memory requirement, however, we have checked carefully
that the ground states of the calculations are converged with respect to the chosen X ., values for all h/J, see
figure 3. For nonzero temperature, we employ a second order Suzuki— Trotter decomposition with an imaginary

time step of 63 = 0.005/], to cool the system from 3 = 0.0 down to the considered temperature 3 = %

5. Results

After having presented our numerical techniques, we will now present our results. In section 5.1 we discuss the
entanglement properties for the ground state, and afterwards in subsection 5.2, we consider the case of thermal
states.

5.1. Logarithmic negativity in ground states

The logarithmic negativity computed in the ground state of the TFIM is depicted in figure 3 for various values of
the transverse field /1/], from top to bottom, and several subsystem sizes £. Distance d = 0 refers to the case of
the two blocks located directly next to each other, d = 1 to the case where there is one site in between, and so on.

Let us first analyze the ferromagnetic phase described by h/J] = 0.8 and h/] = 0.9.For £ = 2, the
logarithmic negativity drops to zero atd* = 2. By increasing the size of the blocks, the entanglement threshold
d* increases, which means that the two blocks remain entangled over alonger distance. Up to £ = 4 we can
accurately detect d*, while for # > 4 the logarithmic negativity reaches the numerical precision in a smooth way
before the appearance of a sudden death of the entanglement, making it difficult to unambiguously extract d*.

Comparing the results of the entanglement threshold at criticality, /] = 1.0with h/] = 0.8and h/] = 0.9,
we observe that for # = 2 they have the same value d* = 2. On the other hand, the results start to differ
increasing the subsystem size £, as one can see for # = 3 and £ = 4, where the logarithmic negativity drops to
zero at a substantially longer distance compared to the ferromagnetic phase. This reveals how the presence of the
long-ranged quantum correlations enhances the entanglement between two separated relatively large blocks. In
particular, for # > 4 one obtains d* > 30, where the entanglement threshold is beyond what we can reach
reliably numerically.

For the paramagnetic phase we consider the fields /] = 1.5and h/] = 2.0. On general grounds, we see in
figure 3 that the logarithmic negativity drops to zero earlier compared to the cases h/J < 1, leading to a smaller
entanglement threshold. For example, for # = 2 the entanglement vanishes after one site separation d* = 1.
Moreover, we observe that there is a dependency of d* on the value of the field h/]. For all the subsystem sizes £
considered, the higher the field i the smaller the entanglement threshold d*.

All the three different regimes studied share the same behavior for the entanglement when # = 1. In the case
each block has a single spin, the logarithmic negativity vanishes unless the two sites are at most next-nearest-
neighbors, i.e. 4* = 1. The result obtained at criticality is particularly surprising since one might expect that the

6
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Figure 3. Logarithmic negativity as a function of distance between two blocks of size # from ¢ = 1to £ = 7 in the ground state of the
TFIM. In order to avoid finite size effects, the two partitions are centered at the middle of the chain with L = 200 lattice sites with
maximum bond dimension Y.« = 32. We show &y for different values of the transverse field h/J from h/] = 0.8 (a)and h/] = 0.9
(b) (ferromagnetic phase) to /] = 1.0 (c) (criticality) to h/J] = 1.5(d)and h/] = 2.0 (d) (paramagnetic phase). The dashed lines in
(b)and (¢c) for £ = 6,7 show Ey for X max = 24.

long-ranged quantum fluctuations would lead also to long-ranged entanglement. We find that the strong
quantum character of the critical point becomes manifest for large block sizes. In order to understand the sharp
entanglement threshold for £ = 1 we provide a simple model system in section 6.

5.2. Logarithmic negativity at nonzero temperature

Switching from zero to finite temperature, thermal excitations start to play an important role. For example, the
one-dimensional TFIM has a phase transition only at zero temperature [79]. This means that the correlation
length stays finite through all values of the transverse field 1/].

Figure 4 shows the logarithmic negativity as a function of temperature T/J and the field i/]. We consider a
chain of L = 200 lattice sites, and each of the two partitions contains £ = 4 spins. From figures 4(a) to (d) we
increase the distance d between the two partitions from d = 0tod = 3. Generally we notice that the higher the
temperature, the more entanglement is suppressed. This observation is in agreement with the expectation that
thermal fluctuations tend to suppress quantum coherence and consequently entanglement. In the opposite
regime of low temperature, the logarithmic negativity shows a peak in the vicinity of the quantum phase
transition which also survives at nonzero temperature.

We will now study quantitatively how the logarithmic negativity decays by increasing the distance d between
the two partitions at finite temperature. Figure 5 shows £y as a function of the distance d for different values of
the inverse temperature 3] ata fixed h/] = 1.0. At very large temperature, here 5] = 5.0 in figure 5(a), the
thermal fluctuations have a strong influence on the entanglement. For the partitions of size # = 1 the
logarithmic negativity drops to zero immediately, i.e., d* = 0 means two spins are entangled only when they are
nearest-neighbors. For # > 2, the logarithmic negativity vanishes after the separation of one lattice site,
ie,d*=1.
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Figure 5. Logarithmic negativity £ as a function of distance dat /] = 1.0 for various temperatures from 8] = 5.0 to 8] = 50.0 for
system size of L = 200.

By reducing the temperature to 5] = 15, thermal fluctuations remain sufficiently strong to restrict the
entanglement threshold considerably. As shown in figure 5(b), for £ = 1, the logarithmic negativity between
two blocks vanishes as soon as the distance between them is more than zero site. For £ = 2and ¢ = 3 however
two blocks remain entangled for a few more sites but of substantially shorter distance compared to the ground
state. The thermal fluctuations show their dominant effect better for larger block size. One can see this by
looking at the cases # = 4and # = 5. Both drop to zero at approximately the same distance. Reducing the
temperature further, the effect of thermal fluctuations becomes smaller as expected. For example in figure 5 for
0] = 25.0and ] = 35.0, the logarithmic negativity for £ = 4and £ = 5 drops to zero at different threshold
distances as a consequence of the less dominant effect of thermal fluctuations. The value of d* for I = 3 has
converged for these 5]’sbut notfor Z = 4, 5.

The behavior of the entanglement threshold as function of temperature for different # and transverse field is
shown in figure 6. Away from criticality the entanglement threshold saturates quickly to a constant value for each
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Figure 6. Entanglement threshold d* for different subsystem size ¢ for both the ground state and thermal states, for three different
transverse fields h. As temperature reduces, d* saturates to a constant value. The value of d* in the ground state (GS) has been shown
as an upper bound for the d* at nonzero temperature.

Z, see figures 6(a) and (c). With reducing temperature, d* does not change and reaches to its final value at ground
state which is an upper bound for d* at finite T. Let us point out that the yellow curve in figure 6(a)
corresponding to £ = 3, seems to reach convergence already at 3] = 50.0. Nevertheless, this value differs by one
lattice site from the result obtained for the ground state. This is due to how close we are to the ground state. The
thermal activation of the lowest energy excitation is proportional to e~ with s the gap. For h/] = 1.0, we have
s = 2m/Lsuch that e=® ~ 107! which means we need to be of much lower temperature to suppress thermal
excitations.

At criticality, the entanglement threshold d* increases with decreasing temperature, figure 6(b). For small
¢ < 2 thevalue of d* converges to its value in the ground state at some temperature. The convergence to the
entanglement threshold in the ground state becomes slower for large value of Z. In other words d* increases by
increasing £ and reducing the temperature, see figure 6(b) for # = 3-5.

6. Entanglement threshold from effective two-level systems

In this section we want to shed some light on the sudden drop of the logarithmic negativity for two spins by
providing a simple effective model. Of central importance in this analysis is the possibility of writing, on general
grounds, any Hermitian operator of a L-spin system in terms of direct products of Pauli operators. In particular,
we focus on the density matrix since it plays the main role in computing the logarithmic negativity:

4
P=" D P 01D QO (16)

My vy N =1

wherea,, = 0,x,y,z,and 0° = I, the2 X 2 unit matrix. From equation (16), the density matrix is fully
determined by the values of the correlation functionssince p, = Tr[p 0'® ... ®0}"].

The case we study is a two-spin problem. We consider two spins and label the position of one of them at site 1
and the other atsite 1 + d. This choice permits us to deal with a small number of correlation functions, leading
to a simple and intuitive analytical condition for having non-vanishing logarithmic negativity. In particular we
focus on the paramagnetic phase, where the structure of the reduced density matrix allows us to derive a
condition for nonzero logarithmic negativity from an effective two-level system.

6.1. Reduced density matrix in the paramagnetic phase
In the paramagnetic phase, the 4 x 4 reduced density matrix p4 g written in the basis {|],), |1,T), [T,1), IT,T)},
is characterized by having nonzero entries only on the diagonal and the anti-diagonal:
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eig(pl®)

E *
Figure 7. Eigenvalues Ef of the partially transposed reduced density matrix p]TLS in equation (19), as a function of §. While the full
lines correspond to E¥, the dotted ones correspond to the unperturbed eigenvalues E... When § is sufficiently large such that the
eigenvalue E* becomes negative, the logarithmic negativity starts to take a nonzero value.

pap(l, 1) 0 0 pa (1, 4)
B 0 22 ps23 0
PAB= 0 G2 ppBi3) 0
Pap4 1) 0 0 pap(4 4)

17)

The reason for the vanishing of the other matrix elements is symmetries of the Hamiltonian, as one can directly
see from writing those entries in terms of the respective two-point correlation functions. For example, let us
consider p, 5(1, 2) = p, — p,, +i(py, — p,,)inwhich p, , = (o1'07"7j). Since we are evaluating the
correlation functions in the ground state and the system is symmetric under time-reversal, it follows that
Poy = P2y = 0.Moreover, in the paramagnetic phase where the ground state does not break the Z, symmetry,
wealso have p, . = p, - = 0.Takinginto account all these considerations we conclude that p4 5(1,2) = 0and
similar argumentations hold for the other matrix elements p, 5(1, 3), p, (2, 4) and p, p(3,4).

The partial transpose of the density matrix is therefore determined by two uncoupled effective two-level

systems:

Pas(L 1) py (2, 3) 0 0
ol = Pas (3> 2) pyp(4 4) 0 0 (18)
AP 0 0 Pap(2 2) pyp(ls 4)
0 0 Pas(®H 1) py G, 3)

For the sake of simplicity, let us focus only on one two-level system, since both of them have the same features:

TLS _ (pA,B(l) D a2, 3)]

19
: Pa5(3:2) pup(4 4) (19)

Let us denote with § = p, 5(2, 3) the coupling between the two levels, with E the eigenvalues of the matrix (19)
andwith E_ = p, (1, 1), E; = p, (4, 4) the unperturbed ones. For an illustration see figure 7.

The picture of the two-level system in equation (18) gives a simple physical explanation for the spatial
behavior of the logarithmic negativity. Although the reduced density matrix p4 5 always has positive eigenvalues
since it is a semi-positively defined operator, the partially transposed matrix pi’ 5 can have negative ones, when at
least one of the two two-level systems has negative eigenvalues. This can lead to a non-vanishing logarithmic
negativity.

6.1.1. Condition for non-vanishing logarithmic negativity

With increasing 6 the splitting between E . and E_ increases, which for sufficiently large 6 turns one of the
eigenvalues negative. In order to obtain a more quantitative description of the behavior of the logarithmic
negativity, we solve the eigenvalue problem of the matrix (19), and similarly for the other two-level system,
searching for the conditions which lead to a negative eigenvalue and therefore to a non-vanishing logarithmic
negativity. As a result we obtain the following inequalities:
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Pi)B(z, 3) > pA’B(l) 1)pA,B(4) 4)) (20)
Pop(L 4 > pyp(2, 2)p, 53, 3). 1)

Equations (20) and (21) give a quantitative statement concerning how strong the couplings p4 (2, 3), pa,5(1,4)
must be to lower the eigenvalue below zero.

To achieve a better physical intuition for the behavior of the logarithmic negativity as a function of distance,
we express the conditions (20) and (21) in terms of the two-point correlation functions using the prescription in
equation (16). These functions, in some particular limiting cases, are described by universal behaviors allowing a
simple analysis of the conditions (20) and (21) and consequently it is possible to have a clear idea on the spatial
structure of the logarithmic negativity for two spins. For simplicity we consider only equation (20), but similar
observations hold for equation (21). Since

pA,B(Z) 3) = Prex + Pyy 22)
IOA,B(I’ 1) =1+ pz,z - pO,z - pz,O (23)
pA,B(4’ 4) =1+ pz,z + pO,z + pz,O' (24)

Equation (20) reads

(1 - pz,z)2 - (pz,O - pO,z)2
<(poe = P+ (o) + 0,07 (25)
Equation (25) can be further simplified noting that the translational invariance of the system implies py, = p..

Moreover, the terms p, , and p,, . vanish because the entries of the reduced density matrix p, s have to be real due
to time-reversal symmetry. Using all this information, equation (25) simplifies to

a- pz,z)2 < (px,x - py,y)z' (26)

In other words, using the definition of the coefficients: p, , = (07 07,1), p,, = (01 0y, )and p,, = (o705, 1),
we can rewrite equation (26) as following

(A = {of0d )’ < (ofoi) — (ol og ) @27

6.1.2. Vanishing logarithmic negativity at large distance
From equation (26) one can directly see the vanishing logarithmic negativity when the two spins are very far
apart. In this regime, the correlation functions follow a generic behavior:

Pex = <o—i60;+1> ~ et — 0, (28)
? d— oo

Py = (ol o) ~ e 020 (29)

0. = (010q1) ~ (o1){0d1) = 0. (30)

Thus, in thelimit d — oo, both p, . and p,,, go to zero and therefore the inequality (26) cannot be satisfied
leading to a vanishing logarithmic negativity. In addition, the two-level system description is able to predict that
the logarithmic negativity is zero not only in the singular point d = oo, butin an interval of nonzero extent

d < oo.Forageneral field /i in the paramagnetic phase, h > h,, both the magnetization and correlation along z
are finite but smaller than one. Consequently, the diagonal elements in the matrix (19) are strictly larger than
zero, as one can realize from equations (23) and (24). In order to argue the existence of a finite interval of
distances where the logarithmic negativity vanishes, let us first begin from the case where the two spins are
infinitely far apart from each other, meaning that the matrix (19) is diagonal because of the exponential
suppression of the off-diagonal elements announced by equations (22), (28) and (29). As the distance d decreases,
the off-diagonal element p4(2, 3) = 0 starts to have a nonzero value, affecting perturbatively the eigenvalue of
the matrix (19). In particular, using perturbation theory in , the shift of the eigenvalues is proportional to the
square of the coupling of the two-level system &

62

Ef=FE, 4+ ——
T T E B

(E29)
supposing that E are nondegenerate. Let us point out that the unperturbed eigenvalues E, appearing in
equation (31), cannot assume negative values since they correspond to the diagonal elements of p4 s which are
probabilities. As a consequence, § must be sufficiently large to make at least one eigenvalue negative. This can
occur only when the distance between the two spins is less than a certain threshold, d < d, since the strength of §
is exponentially suppressed with d as suggested by equations (22), (28) and (29).

While the condition for nonzero logarithmic negativity in equation (26) holds also for small distances d, the
exponential structures of the correlation functions in equations (28), (29) are no longer valid since they describe

11



10P Publishing

NewJ. Phys. 20 (2018) 083032 Y Javanmard et al

the asymptotic behavior in the limit d — oo. Nevertheless, the strength of § decreases with d, as we observe from
the nonzero entanglement between the two spins in the paramagnetic phase at short-distance, see figure 3 panels
(d) and (e). Moreover, nonzero entanglement between two spins at short distances was already shown in a
variety of works [37—41].

6.2. Reduced density matrix at the critical point

After having discussed the threshold d* within a minimal physical model in the paramagnetic phase, we now
aim to outline how our results extend also to the critical point. Importantly, the two-level system description for
the reduced density matrix introduced in the previous section holds also at criticality, since we still have that the
matrix elements p . = p,, x = po, = ps, vanish at the quantum phase transition. Only in the symmetry-
broken phase, some of the elements become nonzero, such as p, , which contains information about the order
parameter.

The main difference to the paramagnetic phase consists in the functional form of the order parameter
correlation function (28). Specifically, it exhibits a power law decay instead of an exponential one: p_  ~ d™",
with 7 the critical exponent of the correlation function whose value depends on the universality class of the
problem. For the 1D transverse field Ising model we have n = 1/4.

According to our arguments from the previous section, we could deduce the existence of an entanglement
threshold d* from the fact that the correlation functions decay to zero in the long-distance limit. This property
still persists at the critical point, although correlations are now long-ranged, of course. Nevertheless, we can
follow the same considerations as in the previous section to show that a finite d* exists. However, due to the
long-ranged correlations one can generically expect that d* occurs at a larger value compared to the
paramagnetic phase.

7. Discussion and conclusions

In this work we have studied the spatial entanglement structure of the transverse-field Ising chain at zero and
nonzero temperatures. Specifically, we have investigated the logarithmic negativity between two disjoint blocks
of equal size £ as a function of their separation, which is an entanglement analog to a quantum correlation
function. While the cases of # = 1 and of large blocks has been considered already in the literature [37-41], we
studied the crossover regime between those limits.

We have found that for any fixed size £ of the blocks there exists an entanglement threshold at a distance d*
beyond which the logarithmic negativity vanishes identically. This holds across the whole phase diagram of the
system including also the quantum critical point where the system exhibits long-ranged quantum correlations.
The influence of temperature onto the spatial entanglement structure as measured by the logarithmic negativity
depends crucially on the size £ of the blocks. The larger d* (for increasing £) the more important the influence of
temperature, cutting off long-range entanglement.

For small blocks # the entanglement threshold d* appears on short distances on the order of a few lattice
spacings even at the quantum critical point. In this case the precise value of d* is determined by nonuniversal
short-distance properties that depend on the microscopic details of the model. However, using a simple effective
model we have found for the case # = 1 that the existence of the threshold d* can be derived solely from the
universal long-distance properties.

A vanishing logarithmic negativity for blocks of size # = 1 implies that the two corresponding qubits are
unentangled, because the PPT criterion (whose violation is measured by the negativity) for the separability of a
quantum state is not only necessary but also sufficient. For larger blocks £ > 1 the PPT criterion is not sufficient
anymore, such that a vanishing logarithmic negativity at distances larger than d* does not necessarily imply that
the two blocks are completely unentangled. Thus, we cannot exclude that there exist other measures signaling
nonzero entanglement. However, it is important to note that the logarithmic negativity gives abound on the
distillable entanglement, such that a vanishing logarithmic negativity implies that no Bell pairs can be extracted
from the state.

At first sight the already known result of a finite entanglement threshold d* < oo for # = 1 at the critical
point might not comply with expectations originating from strong quantum correlations or the well-established
violation of the area law for the entanglement entropy. The results of our work provide a quantitative description
of the crossover from # = 1to# >> 1 uponincreasing .

We have studied the spatial entanglement structure for the transverse-field Ising chain so that it is a natural
question to which extent our results extend to a broader class of systems. The effective model for the reduced
density matrix at £ = 1, which we used to argue about the existence of an entanglement threshold, can be
straightforwardly applied to other models as well, independent of the dimension provided the blocks consist of
spin-1/2 degrees of freedom and the system resides in a paramagnetic phase. Our conclusions also hold for the
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critical point whenever the quantum correlations are long-ranged along one particular direction. This might
change, for example, in the case the transition is associated with a broken U(1) instead of Z, symmetry. For
larger block sizes £ > 1 the situation is much less clear on general grounds and deserves a further investigation.
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