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Abstract

LIM-domain only protein 4 (LMO4) is a widely expressed protein with important roles in embryonic development and breast
cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory
factor-1 (DEAF1), with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1
binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners,
namely LIM domain binding protein 1 (LDB1) and C-terminal binding protein interacting protein (CtIP/RBBP8). Mutagenic
screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-
terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the
solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes
structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears
to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for
LMO4 therefore most likely provides a level of regulation between those different pathways.
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Introduction

LMO4 is a member of the LIM-only protein family (LMO1–4)

of metazoan transcriptional co-regulators, and has important roles

in neural and skeletal development [1,2,3]. It is overexpressed in

greater than 50% of sporadic breast cancers and overexpression is

correlated with a poor outcome [4,5]. Although LMO proteins are

known to regulate gene transcription, they do not bind DNA

directly. Rather, they use their protein-interacting LIM (Lin-11/

Isl1/Mec-3) domains to make simultaneous contacts with two or

more other proteins that do bind to DNA, such as GATA1 and

basic helix-loop-helix (bHLH) proteins [6,7]. Interaction of these

LIM domains with the adaptor protein LIM domain binding

protein 1 (LDB1/CLIM2/NLI) facilitates long range chromatin

interactions (e.g., [8,9,10,11]) via the self association of LDB1

[12,13,14].

Whereas LMO1–3 have relatively restricted expression patterns

and can sometimes substitute for each other [15], LMO4, the most

divergent member of the LMO family, is expressed much more

broadly and appears to have a correspondingly broader range of

interaction partners. Reported binding partners include LDB1

[16,17], GATA6 [18], the tumour suppressor CtIP/RBBP8

[19,20,21], the bHLH proteins HEN1 [22] and neurogenin-2

[23], estrogen receptor-a [24], the membrane receptor protein

neogenin [25], protein tyrosine phosphatase 1B (PTP1B) [26], the

transforming growth factor b family member BMP7 [27], the

transcription factor DEAF1 [28], and components of a nucleo-

some-remodelling complex (HDAC1, HDAC2 and MTA1) [24].

In line with the wide range of reported partners, LMO4 has

diverse functions in normal and diseased states. During mouse

embryogenesis it is involved in closing the neural tube during

gastrulation [1,3], anterior-posterior patterning [1], development

of the inner ear [13], neural development [29] and sex

determination [30]. In adult mice it is implicated in memory

and learning [31], insulin secretion and sensitivity [26,32],

adipogenesis [33] and the development of mammary glands

during pregnancy [4]. LMO4 also appears to regulate the cell

cycle and can localise to centrosomes [34]. Aside from breast

cancer, LMO4 is overexpressed in non-small-cell lung cancer [35].

Overexpression of LMO4 is associated with good prognosis in

pancreatic cancer [36], whereas decreases in expression have been

correlated with aggressive meningioma [37], hormone-refractory

recurrent prostate cancer [38] and Alzheimer’s disease [39,40].
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Establishing the mechanisms by which LMO4 binds its partner

proteins will help us understand how LMO4 contributes to these

activities, and how these activities may be connected. However, of

the many known protein partners of LMO4, to date only

interactions with LDB1 and CtIP have been physically char-

acterised.

The LIM-interacting domain (residues 300–330) of LDB1

(LDB1LID), which is intrinsically disordered in isolation, forms b-

zippers that augment the b-hairpins in each LIM domain [41] of

the tandem LIM domains of LMO4 (LMO4LIM1+2). The proteins

bind each other in a head-to-tail manner, that is, with the C-

terminus of one protein proximal to the N-terminus of the other

[42,43,44]. An analogous complex is formed between the first LIM

domain from LMO4 (LMO4LIM1) and residues 664–674 of

CtIP641–685, which also appears to be intrinsically disordered in

isolation [19]. LMO4NLDB1, LMO4NDEAF1 and etc. are used

herein to designate engineered tethered complexes in which ‘‘N’’
represents a Gly/Ser linker. The name order reflects the order of

the domains in the construct. The structures of LMO4LIM1NLDB1

and CtIP664–674NLMO4LIM1 overlay well; it is clear that LDB1LID

and CtIP664–674 bind LMO4LIM1 in an identical manner, despite

low sequence identity. These overlapping binding sites and other

experimental data indicate that the binding of CtIP or LDB1 to

LMO4 is mutually exclusive and, when all are present in the same

location, CtIP and LDB1 must compete for binding to LMO4

[19].

DEAF1 exhibits many biological parallels with LMO4,

suggesting that the reported interaction has important biological

roles. Both proteins contribute to anterior-posterior patterning and

neural tube closure in the developing mouse [1]. Like LMO4,

DEAF1 is involved in insulin signalling [45], onset of Type 1

diabetes [46], cognitive [47,48] and mood disorders [49]. They are

co-expressed in multiple cell types [17,50] and have similar knock-

in or knock-out phenotypes. Further, overexpression of either

protein enhances the proliferation of breast epithelial cells [4,51].

We previously reported that LMO4 binds a putatively

disordered region in DEAF1 (DEAF1404–438). This region of

DEAF1 lies close to a coiled-coil domain that forms tetramers in

vitro [52], and encompasses the nuclear export signal (NES) [53].

In addition, we conducted cell-based localisation studies using

constructs spanning the LMO4-interacting domain, NES and

coiled-coil domains of DEAF1 to show that LMO4 likely

modulates the sub-cellular localisation of DEAF1. Here we

address the molecular basis for complex formation by LMO4

and DEAF1. We show using the yeast two-hybrid assay that both

LIM domains of LMO4 are required for the interaction, and that

the LIM2 domain of LMO4 (LMO4LIM2) and the N-terminal

region from DEAF1404–438 are the major determinants of binding.

We generated a stable complex comprising these domains, and

determined its solution structure. The structure reveals that

DEAF1 binds LMO4LIM2 in an extended head-to-tail conforma-

tion, contacting the same face on LMO4 as LDB1, and

demonstrates that a common mode of binding to LMO4 exists

for DEAF1, CtIP and LDB1. Our data suggest that competition

for binding to LMO4 is a common feature of LMO4-binding

partners, and over- or under-expression of LMO4 can disrupt

multiple networks of interactions within cells to promote disease.

Materials and Methods

Cloning
Residue numbering refers to mouse LMO4 and DEAF1 (NCBI

accession numbers: NP_001155241 and NM_016874, respec-

tively). pGBT9 yeast two-hybrid plasmids encoding LMO4,

LMO4LIM1 and LMO4LIM2, and pGBT9-LMO4NLDB1 were

described previously [19,43]. A yeast two-hybrid plasmid encoding

DEAF145–566 was a gift from Jane Visvader. Vectors containing

inserts encoding surface mutants of LMO4 [19] were sub-cloned

into pGAD10. DEAF1 mutants were generated using overlap

extension PCR on the background template DEAF1404–438_457–479

[52]. L4-DEAF1 (DEAF1404–438 containing a T435D mutation

and a polyproline C-terminal tail) was cloned into the plasmid

pRSET-A.

Yeast two-hybrid assays
Yeast two-hybrid assays were conducted as described previously

[43]. Saccharomyces cerevisiae strain AH109 (Clontech) were co-

transformed and plated on solid media lacking leucine and

tryptophan (–L/–W; growth). Liquid cultures of co-transformed

yeast were serially diluted (A600 nm = 0.2, 0.02 and 0.002) and

spotted (2 mL) on plates that also lacked histidine (2L/2W/2H;

low stringency), and included 0.5 mM 3-amino-1,2,4,-triazol (2

L/2W/2H + 3-AT; medium stringency), or excluded adenine (2

L/2W/2H/–A; high stringency), as well as growth control plates.

Production of recombinant protein
The tethered complexes LMO4LIM2NDEAF1404–418, and

DEAF1404–418NLMO4LIM2 were produced as described previously

for LMO4LIM2NDEAF1404–418 [54]. In these two constructs LIM2

corresponds to LMO477–147 and LMO483–147, respectively. L4-

DEAF1 was produced as a hexahistidine-tagged construct in

Escherichia coli expression strain Rosetta 2 (Novagen). Cells were

cultured in rich media or, for isotopic labelling, in minimal media

containing 15NH4Cl as the sole nitrogen source. Expression was

induced with 1 mM isopropyl-b-D-thiogalacto-pyranoside (IPTG)

at 37 uC for 4 h. The cells were lysed under denaturing conditions

in buffer A (20 mM Tris-base at pH 8.0, 150 mM NaCl and

20 mM imidazole) containing 8 M guanidine-HCl. Cleared lysate

was incubated with Ni-NTA resin for 1 h at 4 uC. The resin was

washed with buffer A containing 6 M urea and then with buffer A

containing 2 mM CaCl2. The peptide was treated with thrombin

on resin overnight at room temperature and eluted with buffer A.

The acidified eluate was applied to a preparative C18 reversed-

phase HPLC column. A gradient of acetonitrile was applied over a

background of 0.1% TFA in MilliQ-water. The protein was

lyophilised, and redissolved in buffers as required.

NMR experiments and structure determination
Chemical shifts for LMO4LIM2NDEAF1404–418, in 20 mM

sodium acetate at pH 5.0, 35 mM NaCl, 0.5 mM TCEP-HCl,

34 mg mL–1 chloramphenicol and Complete EDTA-free protease

inhibitor (one tablet per 50 mL), were assigned using standard

triple resonance NMR experiments as described in [54]. Distance

restraints were obtained from 1H-1H 2D NOESY, 15N-edited

NOESY and 13C-edited NOESY spectra, all with mixing times of

150 ms. NOE peaks were manually picked, checked and corrected

where necessary. The ensemble of structures for LMO4LIM2

NDEAF1404–418 was calculated using ARIA 1.2 implemented in

CNS 1.21 [55]. Default parameters were used except where stated.

The number of molecular dynamics steps was: initial stage, 40000;

refinement stage, 8000; first cooling step, 40000; and second

cooling step, 8000. The upper limit for NOE distance estimates

was increased by 0.15 Å from the default value. A mixing time of

150 ms and a rotational correlation time of 5.16 ns were used to

set relaxation matrix parameters. A zinc patch was included to

define zinc co-ordination geometry (Table 1) based on the

coordinates of the LIM2 domains from LMO4 and LMO2 in

the LMOLIM1+2NLDB1LID (PDB IDs: 1RUT and 2XJY,

Structure of an LMO4-DEAF1 Complex
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respectively. File S1). In the first iteration 200 structures were

calculated, with 20 structures calculated for each of the 7

intermediate iterations, and 600 structures in the final iteration.

The 50 lowest energy structures from the final iteration were

further refined in a shell of water using the standard ARIA

protocol. Longitudinal (T1), transverse (T2) and heteronuclear

NOE relaxation experiments were performed on 600 mM 15N-

labelled LMO4LIM2NDEAF1404–418 using the Bruker pulse pro-

grams hsqct1etf3gpsi3d, hsqct2etf3gpsi3d and hsqcnoef3gpsi3d,

respectively. The relaxation delays used for measuring 15N-T1

time constants were 0.1, 0.15, 0.2, 0.3, 1, 1.4, 1.5 and 2.2 s and

those for measuring T2 time constants were 17, 34, 51, 68, 85, 102,

136, 153, 170, 221 and 255 ms. The same relaxation experiments

were recorded at 800 MHz except that the T2 relaxation delays at

800 MHz were 16, 32, 48, 64, 80, 96, 128, 144, 160, 208 and

240 ms. Lipari-Szabo ordered parameters (S2) were calculated

using the model-free module (fully automated mode) in relax

[56,57].

Recycle delays of 4 s were used in these experiments. Integrated

peaks were fitted to two-parameter exponentials using the

relaxation analysis module in SPARKY [58]. 1H-15N hetero-

nuclear NOEs were calculated by taking the ratio of cross-peak

intensities with and without proton saturation during relaxation

delays. One-dimensional 1H and two-dimensional 15N-HSQC

spectra of L4-DEAF1 were performed in 20 mM sodium acetate

at pH 5.0 and 35 mM NaCl. Images of structures were generated

Table 1. NMR restraints and refinement statistics for LMO4LIM2DEAF1404–418.

Distance restraints

Total NOE 894

Ambiguous 92

Intra-residue 450

Sequential (|i2j| = 1) 172

Medium-range (|i2j|,5) 45

Long-range (|i2j|$5) 227

S-Zn (2.3 Å)a 6

N-Zn (2.0 Å)a 1

O-Zn (2.03 Å)a 1

Total dihedral angle restraints (TALOS)a

Q 43

y 43

Zinc(II) angle restraintsb

S-Zn-S (112u) 6

C-S-Zn (107u) 6

S-Zn-N (107u) 3

C-N-Zn (125u) 1

S-Zn-O (102u) 3

C-O-Zn (125u) 1

Atomic RMSD (Å) Backbone Heavy

LMO4LIM2NDEAF1404–418
c 0.691 1.102

LMO4c 0.666 1.102

DEAF1c 0.506 0.891

PROCHECK–Ramachandran Statistics (all)

Most Favoured (%) 73.3

Additionally allowed (%) 23.1

Generously allowed (%) 2.2

Disallowed (%) 1.4

Mean deviations from the ideal geometry

Bond Lengths (Å) 0.0039060.00023

Bond Angles (u) 0.49360.018

Impropers (u) 1.3560.11

dDistance violations .0.5 Å 2

aThere were no dihedral angle violations .5u.
bFull parameter and topology files are included in File S1.
cRegions of LMO4 between residues 86–139 and of DEAF1 between residues 404–414 including S208 of the glycine-serine linker were considered to be structured
because the residues contained within had sum of angle order parameters (Q + y).1.8 except for residues 103–105 of LMO4 and residues 404, 406 and 407 of DEAF1.
dDistance violations were restricted to disordered regions of the protein.
doi:10.1371/journal.pone.0109108.t001
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using PyMol, simple homology models were generated using

SWISS-MODEL [59] or mutation of residues in PyMol, and the

surface area of the LMO4-DEAF1 interface was calculated using

PISA [60].

Multi-angle laser-light scattering (MALLS)
Purified proteins were subjected to size-exclusion chromatogra-

phy using a Superose-12 10/30 size-exclusion column (GE

Healthcare) with an in-line MiniDawn MALLS detector (Wyatt

Technology) and Wyatt Refractometer. Proteins were eluted in

20 mM Tris-acetate at pH 8.0, 50 mM NaF and 0.5 mM TCEP-

HCl using a flow rate of 0.5 mL min21. The weight-average

molecular weight was calculated using the intensity of scattered

light in combination with the change in refractive index. Protein

concentration at the detector was determined by the change in

refractive index.

Far UV-circular dichroism (CD) spectropolarimetry
The far-UV CD spectrum of L4-DEAF1 (40 mM) buffered in

20 mM Tris-acetate and 50 mM NaF was recorded on a Jasco J-

720 spectropolarimeter at 20uC in a 1-mm quartz cuvette. The

spectrum represents the average of three accumulations collected

at a rate of 20 nm min21. Data were collected at a resolution of

0.5 nm and smoothed over a moving average of five consecutive

data points. Curves were buffer-baseline corrected.

Accession numbers
The coordinates of the 20 lowest energy water-refined structures

of LMO4LIM2NDEAF1404–418 have been deposited in the PDB

with PDB ID: 2MBV. The NMR assignments were previously

deposited in the BMRB (deposition number 18898) [54].

Figure 1. Yeast two-hybrid and mutagenic analysis of LMO4-DEAF1 binding. (A) Data showing the interaction of DEAF145–566 (DEAF1) or
control (empty) with the tandem LIM domains of LMO4 (LMO4), the isolated LIM domains of LMO4 (LIM1 and LIM2) or a pre-formed LMO4NLDB1LID

complex. These were spotted onto low-stringency interaction plates or growth control plates. ‘‘Empty’’ refers to pGAD10 vector lacking an insert. (B)
Summary of yeast two-hybrid work. Surface residues of LMO4 that when mutated strongly affected (red), attenuated (orange) or had no effect (blue)
on interaction with DEAF1 are mapped onto the structure of LMO4NLDB1LID (1RUT). Non-mutated residues are in white, and LDB1LID is shown as dark
sticks. (C) Mutagenic scanning of the minimal LMO4-binding domain of DEAF1 (in the DEAF1404–438_457–479 construct). Residues in DEAF1404–438 were
systematically mutated to alanine or glycine in sets of three (or two) as indicated and analysed for binding to LMO4 using yeast two-hybrid assays.
Co-transformants were spotted onto selective media (low, medium and high stringency plates) as well as growth control plates. The sequence of
DEAF1 is coloured according to whether the mutation strongly affected binding (red), attenuated binding (orange) or had no effect (blue) compared
to wild-type positive control on each plate (‘‘wt’’). Thick white lines indicate separate plates.
doi:10.1371/journal.pone.0109108.g001
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Results

Identification of domains and residues on LMO4
important for binding to DEAF1

Yeast two-hybrid assays were used to test the interaction of

DEAF145–566 with isolated LIM domains of LMO4 (LIM1 and

LIM2). LMO4 was expressed either as a construct containing one

or both LIM domains (LMO4) or as a fusion protein with

LDB1LID which makes an ‘intramolecular complex’ (LMO4NLD-

B1LID). An interaction between LMO4 and DEAF1 was only

observed in the presence of both LIM domains and in the absence

of LDB1LID (Fig. 1a). These data suggest that both LIM domains

are involved in binding DEAF1 and that the presence of LDB1LID

prevents DEAF1 from binding to LMO4. Thus, DEAF1 and

LDB1 share similar binding faces on LMO4, or the presence of

LDB1 induces a conformational change in LMO4 that prevents

DEAF1 binding.

To identify the DEAF1 interaction surface on LMO4, a library

of LMO4 surface mutants was screened for an interaction against

DEAF145–566 using yeast two-hybrid assays (Fig. 1b). The

interaction was considered to be strongly affected if no growth

was observed on medium stringency selection plates (red residues),

and attenuated if growth on these plates was less than that

observed for wild-type LMO4 (orange residues). In general, the

residues for which the interaction was disrupted lie predominantly

on the LDB1-binding face of LMO4 (Fig. 1b), supporting the

idea that a common binding face on LMO4 exists for DEAF1 and

LDB1. Mutated residues for which the interaction was most

strongly affected (i.e., L99, R102, Q104/G105, P124/G125 and

R127) are located on LMO4LIM2, whereas those for which the

interaction was attenuated (R33/F34, Y37, K49, G69 and R74/

S75) are part of LMO4LIM1 (Fig. 1b). Thus, although both LIM

domains of LMO4 are required for the interaction with DEAF1 to

be detected in yeast, the second LIM domain (LIM2) appears to

more important for binding.

Characterisation of the LMO4-interaction domain in
DEAF1

We previously defined the LMO4-interaction domain in

DEAF1 as DEAF1404–438 [52], which is predicted to be

unstructured in the context of the full-length protein [52,53] by

sequence analysis programs that predict order/disorder, PONDR

[61] and IUPred [62], and lacks substantial levels of secondary

structure by JPred3 (which predicts secondary structure based on

sequence) [63]. To identify residues of DEAF1 that are important

for binding LMO4, sequential sets of three residues in DEAF1404–

438 were mutated to alanine (or glycine if the original residue was

alanine) and screened for an interaction with LMO4 by yeast two-

hybrid analysis (Fig. 1c). In general, mutations to the N-terminal

half (404–421) of DEAF1404–438 strongly affected the interaction,

whereas mutations to the C-terminal half had little effect.

We could not produce a recombinant peptide corresponding to

DEAF1404–438 in E. coli. The peptide was either poorly expressed

or was rapidly degraded. Instead, we expressed and purified L4-

DEAF1, a construct of DEAF1404–438 that contains a point

mutation, T435D (originally generated as a pseudo-phosphoryla-

tion mutant for a separate study), and a polyproline tail that was

added to the C-terminus to enhance proteolytic stability [64,65]

(Fig. 2a). NMR experiments and far-UV CD spectropolarimetry

were used to assess the fold of L4-DEAF1. The 15N-HSQC

spectrum shows sharp peaks that cluster between 8–8.5 ppm in the
1H dimension (Fig. 2b). This type of poor dispersion of proton

resonances is a hallmark of intrinsically disordered proteins [66].

The far-UV CD spectrum is also characteristic of a largely

disordered peptide, with a minimum at ,200 nm and negative

signal at 195 nm (Fig. 2c). Thus, DEAF1404–438 is intrinsically

disordered in isolation.

Designing an LMO4-DEAF1 complex
Recombinant forms of LMO4 including either or both LIM

domains tend to be poorly soluble and/or are aggregation prone

unless expressed as a tethered complex in which an interacting

Figure 2. The LMO4-binding domain from DEAF1 is disordered in solution. (A) The sequence of L4-DEAF1 includes residues 404–438 of
DEAF1 (bold), a T435D point mutation (underlined) and a polyproline C-terminal tail (PPPPPR). The two N-terminal residues (GS) are an artefact of the
plasmid and remain after treatment with thrombin. (B) 15N-HSQC spectrum of L4-DEAF1 (160 mM) was recorded in 20 mM sodium acetate at pH 5.0
and 35 mM NaCl at 298 K on a 600 MHz spectrometer equipped with a TCI-cryogenic probehead. (C) The far-UV CD spectrum of L4-DEAF1 (40 mM)
dissolved in 20 mM Tris-acetate at pH 8.0 and 50 mM NaF.
doi:10.1371/journal.pone.0109108.g002
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peptide domain from LDB1 or CtIP is tethered to LMO4 via a

flexible linker [19,43]. We used the same strategy to engineer

LMO4NDEAF1 complexes. A range of different LMO4NDEAF1

complexes were generated that contained both LIM domains of

LMO4 and DEAF1404–438. Although some of these complexes

showed promise in terms of soluble expression and preliminary

structural characterisation (Fig. S1 in File S2), they were not

sufficiently stable for detailed structural characterisation. In

particular, these proteins were prone to proteolytic cleavage at

K418 of DEAF1, as determined by mass spectrometry (Sydney

University Proteomics Research Unit; SUPRU). A K418Q mutant

of LMO4NDEAF1404–438 was generated in an effort to prevent

proteolytic degradation, but this protein was insoluble. Given that

our yeast two-hybrid data indicate that binding is mainly mediated

by LMO4LIM2 and the N-terminal half of DEAF1404–438, we

generated protein constructs that included only these domains. We

engineered these complexes in both orientations (LMO4LIM2

NDEAF1404–418 and DEAF1404–418NLMO4LIM2, where the order of

the domains in the name corresponds to the order in the construct;

Fig. 3a). Both tethered complexes were subjected to size-

exclusion chromatography in combination with multi-angle

laser-light scattering (SEC-MALLS). For both constructs the

theoretical molecular weights (LMO4LIM2NDEAF1404–418 = 10.1 kDa

and DEAF1404–418NLMO4LIM2 = 9.3 kDa) and observed experimen-

tal molecular weights (LMO4LIM2NDEAF1404–418 = 10.760.8 kDa

and DEAF1404–418NLMO4LIM2 = 10.160.6 kDa) were in excellent

agreement, indicating that the proteins are predominantly mono-

meric (Fig. 3c). The 15N-HSQC spectrum of LMO4LIM2NDE

AF1404–418 was of high quality, with most peaks exhibiting similar

intensities, in contrast to the broad range of signal intensities observed

in the 15N-HSQC of DEAF1404–418NLMO4LIM2 (Fig. 3b).

Determining the structure of the second LIM domain of
LMO4 in complex with DEAF1

The NMR spectra of LMO4LIM2NDEAF1404–418 were assigned

as described previously [54] and the structure was determined

using standard solution NMR methods. The structured regions of

the complex are LMO486–139 and DEAF1404–414 (Table 1 and

Figure 3. Engineering tethered LMO4LIM2NDEAF1404–418 and DEAF1404–418NLMO4LIM2 complexes. (A) Schematics of full-length LMO4
(blue) and DEAF1 (orange) and engineered ‘intramolecular complexes’ of LMO4LIM2 and DEAF1404–418. The complexes are tethered via a glycine-serine
linker (red) either from the C-terminus of LMO4 to the N-terminus of DEAF1 or vice versa. SAND, coiled-coil (CC) and MYND domains, and nuclear
localisation (NLS) and nuclear export (NES) signals in DEAF1 and the LIM1 and LIM2 domains in LMO4 are indicated. (B) MALLS analysis of tethered
constructs as indicated; protein concentrations at the detectors are 30 mM. Lines represent the refractive index and calculated molecular weights are
shown as symbols. Monomeric BSA (blue) was used as a standard. (C) 15N-HSQC spectra of LMO4LIM2NDEAF1404–418 (black) and DEAF1404–

418NLMO4LIM2 (red) were recorded in 20 mM sodium acetate at pH 5.0, 35 mM NaCl and 0.5 mM TCEP-HCl at 298 K on a 600 MHz spectrometer.
doi:10.1371/journal.pone.0109108.g003
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Fig. 4). The r.m.s.d. of these regions in the ensemble is 0.7 Å for

backbone atoms and 1.1 Å for all heavy atoms. The structure of

LMO4LIM2 is typical of LIM domains [67], which contain two

zinc-binding modules, each of which comprises two orthogonally

arrayed b-hairpins followed by a short helical region of variable

length. In this case the a-helices are short and poorly defined. The

first b-hairpin and helix in each zinc-binding module coordinate

one zinc ion. The first zinc-ion is coordinated by C87, C90, H109

and C112, and the second by C115, C118, C137 and D140

(Fig. 4b). A hydrophobic core is formed by residues from the first

(M101, A103, Q104, Y108 and F113) and second (L122, F54 and

Y56A) zinc-binding modules packing against each other. Apart

from a single residue preceding the N-terminus of DEAF1 (S208),

the glycine-serine linker between LMO4LIM2 and DEAF1404–418,

appears to be disordered (Table 1).

The DEAF1 peptide binds in an extended, head-to-tail

conformation across the length of LMO4LIM2 (Fig. 4a–d),

indicating that this motif, like other LIM-interacting domains,

becomes structured upon binding. The interface between

LMO4LIM2 and DEAF1404–418 buries a surface area of

,1700 Å2 and complex formation appears to be mediated by

hydrophobic interactions between side-chains (Fig. 4). The side-

chain of residue DEAF1A405 is buried in hydrophobic core of

LMO4LIM2 between the two zinc-binding modules, and a number

of other residues, particularly in the stretch I404–E409, make

surface hydrophobic contacts. In at least half the conformers in the

ensemble, four backbone-backbone hydrogen bonds are formed

between LMO4LIM2 and DEAF1 (Fig. 4e), creating short

segments of b-strand that augment b-hairpins in LMO4. A single

salt bridge formed between DEAF1E406 and LMO4R102 (Fig. 4c

Figure 4. The structure of LMO4LIM2NDEAF1404–418. (A) Overlay of the 20 lowest energy structures. Backbone regions from LMO4LIM2 (blue),
linker (grey) and DEAF1 (yellow) are shown as lines with only Ca atoms shown. Zinc ions (Zn1 and Zn2) appear as grey spheres. (B) Ordered regions of
the lowest energy structure are shown as ribbons, coloured as in panel (A). Side-chains of zinc-coordinating residues are shown as sticks. The linker is
represented as a dashed grey line. (C) LMO4LIM2 is represented as an electrostatic surface. Positively and negatively charged surfaces are coloured
blue and red, respectively. DEAF1 is shown as orange sticks except for nitrogen (blue) and oxygen (red) atoms. Residues of DEAF1 are labelled. The N-
and C-termini of DEAF1 are marked. The salt bridge formed between R102 of LMO4 and E409 of DEAF1 is denoted by a dashed yellow line. (D)
Surface mutations of LMO4 that abrogated (red) its interaction with DEAF1 (yellow sticks) in yeast two-hybrid assays are mapped onto the lowest
energy solution structure of LMO4LIM2NDEAF1404–418. (E) Summary of interactions at the LMO4-DEAF1 interface. Residues from LMO4LIM2 are
positioned directly above or below their interaction partners from DEAF1404–418 (orange) and coloured according to the type of interaction. S208
(grey) of the linker makes contacts in more than half the structures in the final ensemble. Residues S208 from the linker and I404–A410 from DEAF1
and their interactions are indicated with solid lines. Remaining DEAF1 residues and interactions are indicated with dashed lines.
doi:10.1371/journal.pone.0109108.g004
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and 4e) is seen in more than half the structures in the ensemble

and may help define the binding register.

The effect of the tether on the structure of
LMO4LIM2NDEAF1404–418

The use of a tether can place steric restraints on complex

formation. We previously showed that chemical shift data is

consistent with disorder in the linker [54]. Here we used 15N-

NMR relaxation data to assess whether the tether might introduce

strain into the complex, and also to examine the overall dynamics

of the complex. The data indicate that the N- and C-termini and

the glycine-serine linker between LMO4LIM2 and DEAF1404–418,

with the exception of S208, undergo substantial motion, implying

that the linker is flexible and is unlikely to be inducing non-native

interactions (Fig. 5). The relaxation data show localised excur-

sions within the structured region of LMO4 (A86–H139), which

generally correspond to loop regions, such as N120–V123. In

addition, the T1 data for two regions that form short a-helices in

the crystal structure of LMO4NLDB1 (H109–K111 and E138–

D140) indicates relatively dynamic structure, suggesting that these

short helices are transient in solution. Low values of the order

parameter S2 are also observed for several residues within the LIM

domain. These values likely reflect local dynamics; for example,

E98 and G105, which lie in a loop and a b-turn, respectively,

exhibit low S2 values. Collectively these data may report intrinsic

flexibility within LIM domains (e.g., [68,69,70]).

Discussion

The LMO4LIM2-DEAF1 interaction
Although both LIM domains of LMO4 were required to detect

an interaction with DEAF1 in yeast two-hybrid experiments, it was

only possible to determine the structure of a smaller LMO4-

LIM2NDEAF1404–418 tethered complex. However, comparison of
15N-HSQC spectra from an LMO4LIM1+2NDEAF1 complex and

LMO4LIM2NDEAF1404–418 recorded under identical conditions

shows high levels of overlap, consistent with conservation of

structure for LMO4LIM2 and DEAF1 in both constructs (Fig. S2
in File S2). The LMO4LIM2 in this structure is almost identical to

that from the crystal structure of LMO4LIM1+2NLDB1LID

(LMO486–139 from the single molecule in PDB: 1RUT and the

mean structure from PDB: 2MBV give rise to a backbone r.m.s.d

of 1.3 Å). The tether should stabilise the complex both by reducing

the loss of entropy associated with binding, and by increasing the

effective concentrations of interacting domains. Several pieces of

data suggest that the tether allows a native-like complex between

LMO4 and DEAF1. First, the data from our mutagenic

interaction screens (Table 1 and Fig. 1) are consistent with the

solution structure of the complex. That is, the key residues from

the N-terminal half of DEAF1404–418 and LMO4LIM2 are found at

the LMO4LIM2-DEAF1 interface in the structure (Fig. 4).

LMO4Q104/G105 is a minor exception; these residues form part

of a b-turn that packs against LMO4R102, which in turn forms a

Figure 5. Relaxation analysis of LMO4LIM2NDEAF1404–418. (A) Longitudinal (T1), (B) transverse (T2) relaxation time constants, (C) heteronuclear
NOEs, calculated as the ratio of peak intensities with and without proton saturation, all at 600 MHz. (D) Lipari-Szabo (S2) parameters for each assigned
backbone amide group in LMO4LIM2NDEAF1404–418 calculated from data recorded at 600 MHz and 800 MHz, using the program relax. Error bars
represent one standard deviation from the curve fit for each residue. Background colours indicate regions belonging to LMO4 (blue), DEAF1 (yellow)
or the glycine-serine linker (G/S; grey).
doi:10.1371/journal.pone.0109108.g005
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salt bridge with DEAF1E406. Second, we have previously shown

that increasing the length of the synthetic linker from eight to

eleven residues, or extending the DEAF1 peptide by five residues

in the N-terminal direction does not change the structure of the

complex according to 15N-HSQC spectra [54]. In contrast, we

recently showed, in a closely related system involving the LIM

protein ISL1, that randomising the sequence of a LIM-binding

peptide induced non-specific binding, as evidenced by significant

line broadening in TROSY-15N-HSQC spectra [71] of the

randomised peptide complex, compared to the wild-type peptide

complex.

Although the LMO4LIM2NDEAF1404–418 complex appears

overall to be native-like, the last residue of the synthetic linker,

S208, does mediate contacts with LMO4R127 and LMO4F128 in

more than half of the members of the structural ensemble

(Fig. 4e). Similar contacts could also be mediated by DEAF1Q403,

the residue that would replace S208 in the full sequence of

DEAF1. Thus, DEAF1Q403, and possibly one or two additional

residues from DEAF1, are also likely to be involved in the native

protein interaction interface. Given the NMR data described

above, these residues would be expected to slightly extend rather

than significantly change the nature of the binding interface of the

two proteins.

Whereas the structure of the complex around the tether appears

to be native-like, features near the N-terminus of LMO4LIM2 and

C-terminus of DEAF1404–414 suggest that eliminating the LMO4-

LIM1 domain has had a minor effect on structure. For both this

LMO4LIM2NDEAF1 structure and the related LMO2LIM2NLD-

B1LID complex [72], the first b-hairpins in the LIM2 domains are

poorly defined compared with similar complexes that also contain

a LIM1 domain [6,43,44,73]. This suggests that contacts between

the LIM1 and LIM2 domains stabilise the structure at the N-

terminus of the LIM2 domain. A comparison of the LMO4-

LIM2NDEAF1 structure with LMO4-LDB1 structures (Fig. 6a and
b) shows that the C-terminus of the DEAF1 domain extends into

what would be a structured region in a tandem LIM construct.

Figure 6. Tandem LIM LMO4-DEAF1 interactions. (A) Comparison of the lowest energy member of the LMO4-DEAF1 complex ensemble (LMO4
in grey ribbon with blue labels and DEAF1 as orange sticks with black labels) and the LMO4-LDB1 complex (PDB accession code 1RUT, LMO4 with
white surface and ribbon and LDB1 in magenta). Labels for residues in DEAF1 that clash with LMO4 in the LMO4-LDB1 structure are boxed. (B) Close
up of the clashing region from the previous panel, using the same colouring, but with backbone residues from LMO4-DEAF1 (grey) and LMO4-LDB1
(cyan) shown as sticks and backbone-backbone hydrogen bonds with LMO4I94 shown in the same colours. Only the affected residues are shown for
clarity. (C) Structure-based sequence alignment of characterised LIM-peptide complexes. Residues in bold appear to be important for binding based
on mutational studies, boxed residues have been shown to be buried in the hydrophobic core between the two zinc-binding modules in the relevant
LIM domain, and residues highlighted in yellow are predicted to be buried based on the alignment. LIM-binding motifs are indicated with asterisks.
Residues in the spacer regions are generally not conserved but are shown for completeness. Two binding registers are proposed for the LIM1-binding
residues in DEAF1. (D) Simple model for binding register (i). Structures for LMO4LIM1-CtIP and LMO4LIM2-DEAF1404–410 were aligned over the backbone
atoms of the respective LIM domains in the LMO4-LDB1 structure (1RUT), and the residues in CtIP were altered to the correspond residues in DEAF1
using the mutagenesis module in PyMol. The linker between LIM1 and LIM2 from the LMO4-LDB1 structure is shown as a white cartoon. The
approximate position of DEAF1411–415 is indicated with an orange line. (E) Homology model for binding mode (ii) using the structure of Lhx3–Isl1 as a
template. In all cases where molecules are shown as sticks, nitrogen and oxygen atoms are shown in blue and red, respectively.
doi:10.1371/journal.pone.0109108.g006
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Indeed, in the LMO4LIM1+2NLDB1 structures [43,44], LMO4I94

(which forms a backbone-backbone hydrogen bond with

DEAF1T414 in the structure) forms an intramolecular backbone-

backbone hydrogen bond that would preclude it from making an

intermolecular hydrogen bond with a peptide binding-partner

(Fig. 6b). Apart from that hydrogen bond, there are relatively few

LMO4-DEAF1 contacts in this region of the complex (Fig. 4c
and e). Although it is possible that the interaction between LMO4

and DEAF1 forms an atypical LIM-peptide interface, we think it is

more likely that this region of the interface is an artefact resulting

from construct design. Indeed, 15N-HSQC spectra show conser-

vation of peaks from S208 and DEAF1404–411 for LMO4LIM1+2

and LMO4LIM2 complexes, but no conservation of peaks for

DEAF1 residues that lie C-terminal to DEAF1411 (Fig. S2 in File
S2). Assuming that S208 is a good mimic of DEAF1Q403, there is

high structural homology between DEAF1403–410 and LDB1302–

309, despite poor sequence identity – only DEAF1P408 and

LDB1P307 are identical in the two LMO4 partners (Fig. 6).

The tandem LIM LMO4-DEAF1 interface
All characterised peptide-like LIM-interaction domains bind the

equivalent faces of their target tandem LIM domains using two

linear binding motifs roughly 8–10 residues long. The binding

motifs are separated by a spacer of 1–9 residues [41]. We predict

that the C-terminal portion of DEAF1404–438 will bind LMO4LIM1

in the same fashion as LDB1 and CtIP because our data shows the

same key residues of LMO4 are implicated [19,43,44]. The

mutagenic data for DEAF1 (Fig. 1c) indicate that two other

portions of DEAF1404–438 may contribute to binding: DEAF1419–

421 and DEAF1434–438. The former region forms a small

hydrophobic cluster that is typical of peptide LIM-binding motifs

[41] and, assuming a spacer of ,5–6 residues, would be well

placed to interact with the core binding site on LMO4LIM1.

Spacers of this size are utilised by the Lhx3/4-binding domains of

ISL1 and ISL2 [70,71]. In contrast, the more distal residues

(DEAF1434–438) are predicted to lie outside the LIM-binding motif.

We have seen a similar effect upon mutation of some residues C-

terminal of the LMO4-interaction domain in LDB1 [43] and CtIP

[19]. These mutations might disrupt long-range interactions, but

additional yeast-two hybrid data, in which we assessed the stability

of one of these mutants through interaction with a C-terminal

coiled-coil domain, indicates that these mutations destabilise the

constructs in yeast cells (Fig. S3 in File S2).

Even with the identification of the short hydrophobic cluster

DEAF1I419/V420/L421 as a likely binding motif, it is not possible to

accurately predict the binding register of the LIM1-binding motif.

For example, two possible registers based on those observed for

LMO4-CtIP (where two residues are buried in the hydrophobic

core of the LMO4LIM1 domain) and LMO4-LDB1 and related

Lhx-ISL complexes (where a single residue is buried in the

hydrophobic core of the LMO4LIM1 domain) are shown (Fig. 6).

In the first model of binding (Fig. 6d), the side-chains of

DEAF1I419 and DEAF1L421 are buried in the hydrophobic core

of the protein, DEAF1T422 is correctly positioned to mimic

LDB1T323 and CtIPT671, and DEAF1K418 mimics CtIPK667. In the

second model of binding, which is based on the structure of

Lhx3LIM1+2NISL1LBD, the side-chain of V420 is buried (as is

LDB1I322 or ISL1V282), and DEAF1K418 mimics LDB1R320. At

this stage the mutational data does not allow us to distinguish the

two models. Note that other binding modes are possible, and the

Figure 7. LMO4 is a protein-protein interaction network hub linking multiple cellular processes. Protein-protein interaction network
assembled from data reported for mouse and human LMO4 proteins from the STRING protein-protein interaction database, plus additional papers
cited in the introduction. Bold lines indicate protein-protein interactions that have been characterised structurally. Other lines indicate reported
interactions that have different levels of evidence and some of these lines may represent indirect interactions. Proteins are loosely grouped into
cellular processes.
doi:10.1371/journal.pone.0109108.g007
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angle between the LIM domains is hard to predict. These hinge/

spacer regions vary considerably between LIM-peptide structures

and in many cases show evidence of flexibility [70,71,73,74,75].

Biological Implications
Our data show that DEAF1, LDB1 and CtIP all bind to the

same face on LMO4. If co-expressed and co-localised in a cell,

they would therefore compete for binding to LMO4. LMO4 does

not contain a nuclear localisation sequence (NLS), and is small

enough (,20 kDa) to passively diffuse into and out of the nucleus

[27]. Nuclear localisation of LMO4 and other family members is

likely to be facilitated by binding to partner proteins that contain

NLSs such as the widely expressed LDB1 [17], whose competitive

binding is important for cell specification in a range of tissue types

[76,77,78]. Binding of LMO4 to DEAF1 facilitates nuclear

localisation of DEAF1, apparently through modulation of the

DEAF1 NES [52]. Simultaneously, DEAF1, which contains a

nuclear localisation signal [53], likely facilitates nuclear localisation

of LMO4. DEAF1 probably also sequesters LMO4 at gene

regulatory elements via the DNA-binding SAND domain in

DEAF1. However, whereas other LMO proteins appear to be

predominantly nuclear, LMO4 can be found in either in the

nucleus or distributed between the nucleus and cytoplasm [4,26].

LMO4 can be palmitoylated at its C-terminal cysteine residue

(C165) which facilitates retention of LMO4 in the cytoplasm and

the endoplasmic reticulum [26]. This apparent ability of LMO4 to

associate with membranes and to have a wider subcellular

distribution provides a partial explanation for why LMO4 has a

broader range of reported interaction partners than other LMO

proteins. In terms of protein-protein interaction networks, LMO4

appears be a hub protein, connecting multiple signalling pathways

including cytokine-, TGFb-, leptin-, Ras- and hormone signalling

(Fig. 7). LMO4 has strong links to transcriptional regulation,

either through components of these pathways (e.g., via STAT3

and ESR1) or by mediating contacts with transcription factors

(such as DEAF1, GATA6 and bHLH proteins), co-factor proteins

(such as LDB1) and chromatin remodelling machinery. By

regulating the expression of cyclin proteins [79], and through

interaction with CtIP, LMO4 is likely to contribute to cell cycle

regulation.

Conclusions

DEAF1, Ldb1 and CtIP all appear to bind the same peptide-

binding face on LMO4, suggesting that competitive binding for

LMO4 and modulation of its subcellular localisation, likely plays a

part in linking diverse cellular pathways. Subsequent disruptions to

the normal expression patterns and subcellular localisation of

LMO4 could therefore contribute to severe developmental

abnormalities and breast cancer. Many partners of LMO4 contain

putative intrinsically disordered regions that could contain LMO4-

binding peptides. It will be interesting to determine if many of the

other interaction partners of LMO4 also bind to the same surface.

Supporting Information

File S1 Zinc patch files for NMR structure determina-
tion in ARIA of the LIM2 domain from LMO4. This zip file

includes 8 compressed files: Zinc.param, wellordered.imp, top-

zinc.pro, topallhdg5.3_thz.pro, run.cns, generate_template.ino,

generate_ion1.2.inp, and zinc.pdb.

(ZIP)

File S2 Contains Supplemental data: Figure S1. 15N-

HSQC spectrum of LMO416–148NL4-DEAF1; Figure S2. Over-

lay of 15N-HSQC spectra for LMO4LIM1+2NL4-DEAF1(black) and

LMO4LIM2NDEAF1404–418(blue); and, Figure S3. The 434–36

triple alanine mutant of DEAF1 is destabilised in yeast compared

to wild-type.

(PDF)
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