428 research outputs found

    Estimation of conditional laws given an extreme component

    Full text link
    Let (X,Y)(X,Y) be a bivariate random vector. The estimation of a probability of the form P(YyX>t)P(Y\leq y \mid X >t) is challenging when tt is large, and a fruitful approach consists in studying, if it exists, the limiting conditional distribution of the random vector (X,Y)(X,Y), suitably normalized, given that XX is large. There already exists a wide literature on bivariate models for which this limiting distribution exists. In this paper, a statistical analysis of this problem is done. Estimators of the limiting distribution (which is assumed to exist) and the normalizing functions are provided, as well as an estimator of the conditional quantile function when the conditioning event is extreme. Consistency of the estimators is proved and a functional central limit theorem for the estimator of the limiting distribution is obtained. The small sample behavior of the estimator of the conditional quantile function is illustrated through simulations.Comment: 32 pages, 5 figur

    An unusual presentation of Castleman's Disease:a case report

    Get PDF
    BACKGROUND: Castleman's disease (CD), a rare condition of uncertain etiology, involves a massive proliferation of lymphoid tissues and typically presents as mediastinal masses. We describe a patient with CD who presented with diffuse adenopathy involving the inguinal, paratracheal, retroperitoneal, axillary, and pelvic regions. CASE PRESENTATION: Case report describing presentation, work-up, management and clinical course of a patient with Castleman's disease in the setting of a county hospital in metropolitan area. Patient was treated with chemotherapeutic agents. CONCLUSIONS: To our knowledge, this represents the first case of CD involving an HIV-positive patient with a negative Human Herpes Virus (HHV-8) viral panel. Because patients with similar clinical histories are at high risk for the development of non-Hodgkin's lymphoma and Kaposi sarcoma, regular medical surveillance is recommended

    Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    Get PDF
    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs

    Bim Nuclear Translocation and Inactivation by Viral Interferon Regulatory Factor

    Get PDF
    Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8) uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1–4), which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFβ receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control replication-induced apoptosis and suggest that inhibitory targeting of vIRF-1:Bim interaction may provide an effective antiviral strategy

    ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants

    Get PDF
    Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies. The MM-VCEP began optimizing ACMG/AMP rules for RUNX1 because many germline variants have been described in patients with familial platelet disorder with a predisposition to acute myeloid leukemia, characterized by thrombocytopenia, platelet functional/ultrastructural defects, and a predisposition to hematologic malignancies. The 28 ACMG/AMP codes were tailored for RUNX1 variants by modifying gene/disease specifications, incorporating strength adjustments of existing rules, or both. Key specifications included calculation of minor allele frequency thresholds, formulating a semi-quantitative approach to counting multiple independent variant occurrences, identifying functional domains and mutational hotspots, establishing functional assay thresholds, and characterizing phenotype-specific guidelines. Preliminary rules were tested by using a pilot set of 52 variants; among these, 50 were previously classified as benign/likely benign, pathogenic/likely pathogenic, variant of unknown significance (VUS), or conflicting interpretations (CONF) in ClinVar. The application of RUNX1-specific criteria resulted in a reduction in CONF and VUS variants by 33%, emphasizing the benefit of gene-specific criteria and sharing internal laboratory data.Xi Luo, Simone Feurstein, Shruthi Mohan, Christopher C. Porter, Sarah A. Jackson, Sioban Keel ... et al

    Non-Human Primate Model of Kaposi's Sarcoma-Associated Herpesvirus Infection

    Get PDF
    Since Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8) was first identified in Kaposi's sarcoma (KS) lesions of HIV-infected individuals with AIDS, the basic biological understanding of KSHV has progressed remarkably. However, the absence of a proper animal model for KSHV continues to impede direct in vivo studies of viral replication, persistence, and pathogenesis. In response to this need for an animal model of KSHV infection, we have explored whether common marmosets can be experimentally infected with human KSHV. Here, we report the successful zoonotic transmission of KSHV into common marmosets (Callithrix jacchus, Cj), a New World primate. Marmosets infected with recombinant KSHV rapidly seroconverted and maintained a vigorous anti-KSHV antibody response. KSHV DNA and latent nuclear antigen (LANA) were readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of infected marmosets. Remarkably, one orally infected marmoset developed a KS-like skin lesion with the characteristic infiltration of leukocytes by spindle cells positive for KSHV DNA and proteins. These results demonstrate that human KSHV infects common marmosets, establishes an efficient persistent infection, and occasionally leads to a KS-like skin lesion. This is the first animal model to significantly elaborate the important aspects of KSHV infection in humans and will aid in the future design of vaccines against KSHV and anti-viral therapies targeting KSHV coinfected tumor cells

    Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies

    Get PDF
    High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data

    The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator

    Get PDF
    Mdc1 is a large modular phosphoprotein scaffold that maintains signaling and repair complexes at double-stranded DNA break sites. Mdc1 is anchored to damaged chromatin through interaction of its C-terminal BRCT-repeat domain with the tail of γH2AX following DNA damage, but the role of the N-terminal forkhead-associated (FHA) domain remains unclear. We show that a major binding target of the Mdc1 FHA domain is a previously unidentified DNA damage and ATM-dependent phosphorylation site near the N-terminus of Mdc1 itself. Binding to this motif stabilizes a weak self-association of the FHA domain to form a tight dimer. X-ray structures of free and complexed Mdc1 FHA domain reveal a ‘head-to-tail’ dimerization mechanism that is closely related to that seen in pre-activated forms of the Chk2 DNA damage kinase, and which both positively and negatively influences Mdc1 FHA domain-mediated interactions in human cells prior to and following DNA damage

    The RBP-Jκ Binding Sites within the RTA Promoter Regulate KSHV Latent Infection and Cell Proliferation

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). However, the development of KSHV-mediated lymphoproliferative disease is not fully understood. Here, we generated two recombinant KSHV viruses deleted for the first RBP-Jκ binding site (RTA1st) and all three RBP-Jκ binding sites (RTAall) within the RTA promoter. Our results showed that RTA1st and RTAall recombinant viruses possess increased viral latency and a decreased capability for lytic replication in HEK 293 cells, enhancing colony formation and proliferation of infected cells. Furthermore, recombinant RTA1st and RTAall viruses showed greater infectivity in human peripheral blood mononuclear cells (PBMCs) relative to wt KSHV. Interestingly, KSHV BAC36 wt, RTA1st and RTAall recombinant viruses infected both T and B cells and all three viruses efficiently infected T and B cells in a time-dependent manner early after infection. Also, the capability of both RTA1st and RTAall recombinant viruses to infect CD19+ B cells was significantly enhanced. Surprisingly, RTA1st and RTAall recombinant viruses showed greater infectivity for CD3+ T cells up to 7 days. Furthermore, studies in Telomerase-immortalized human umbilical vein endothelial (TIVE) cells infected with KSHV corroborated our data that RTA1st and RTAall recombinant viruses have enhanced ability to persist in latently infected cells with increased proliferation. These recombinant viruses now provide a model to explore early stages of primary infection in human PBMCs and development of KSHV-associated lymphoproliferative diseases
    corecore