278 research outputs found
Estimating the burden of minor ailment consultations in general practices and emergency departments through retrospective review of routine data in North East Scotland
Minor ailment attendances in general practices and emergency departments (EDs) place significant burden on health care resources
Boolean Dynamics with Random Couplings
This paper reviews a class of generic dissipative dynamical systems called
N-K models. In these models, the dynamics of N elements, defined as Boolean
variables, develop step by step, clocked by a discrete time variable. Each of
the N Boolean elements at a given time is given a value which depends upon K
elements in the previous time step.
We review the work of many authors on the behavior of the models, looking
particularly at the structure and lengths of their cycles, the sizes of their
basins of attraction, and the flow of information through the systems. In the
limit of infinite N, there is a phase transition between a chaotic and an
ordered phase, with a critical phase in between.
We argue that the behavior of this system depends significantly on the
topology of the network connections. If the elements are placed upon a lattice
with dimension d, the system shows correlations related to the standard
percolation or directed percolation phase transition on such a lattice. On the
other hand, a very different behavior is seen in the Kauffman net in which all
spins are equally likely to be coupled to a given spin. In this situation,
coupling loops are mostly suppressed, and the behavior of the system is much
more like that of a mean field theory.
We also describe possible applications of the models to, for example, genetic
networks, cell differentiation, evolution, democracy in social systems and
neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical
Sciences Serie
Oxaliplatin induces drug resistance more rapidly than cisplatin in H69 small cell lung cancer cells
Cisplatin produces good responses in solid tumours including small cell lung cancer (SCLC) but this is limited by the development of resistance. Oxaliplatin is reported to show activity against some cisplatin-resistant cancers but there is little known about oxaliplatin in SCLC and there are no reports of oxaliplatin resistant SCLC cell lines. Studies of drug resistance mainly focus on the cellular resistance mechanisms rather than how the cells develop resistance. This study examines the development of cisplatin and oxaliplatin resistance in H69 human SCLC cells in response to repeated treatment with clinically relevant doses of cisplatin or oxaliplatin for either 4 days or 2h. Treatments with 200ng/ml cisplatin or 400ng/ml oxaliplatin for 4 days produced sublines (H69CIS200 and H69OX400 respectively) that showed low level (approximately 2-fold) resistance after 8 treatments. Treatments with 1000ng/ml cisplatin or 2000ng/ml oxaliplatin for 2h also produced sublines, however these were not stably resistant suggesting shorter treatment pulses of drug may be more effective. Cells survived the first five treatments without any increase in resistance, by arresting their growth for a period and then regrowing. The period of growth arrest was reduced after the sixth treatment and the H69CIS200 and H69OX400 sublines showed a reduced growth arrest in response to cisplatin and oxaliplatin treatment suggesting that "regrowth resistance" initially protected against drug treatment and this was further upregulated and became part of the resistance phenotype of these sublines. Oxaliplatin dose escalation produced more surviving sublines than cisplatin dose escalation but neither set of sublines were associated with increased resistance as determined by 5-day cytotoxicity assays, also suggesting the involvement of regrowth resistance. The resistant sublines showed no change in platinum accumulation or glutathione levels even though the H69OX400 subline was more sensitive to buthionine sulfoximine treatment. The H69CIS200 cells were cross-resistant to oxaliplatin demonstrating that oxaliplatin does not have activity against low level cisplatin resistance. Relative to the H69 cells, the H69CIS200 and H69OX400 sublines were more sensitive to paclitaxel and taxotere suggests the taxanes may be useful in the treatment of platinum resistant SCLC. These novel cellular models of cisplatin and oxaliplatin resistant SCLC will be useful in developing strategies to treat platinum-resistant SCLC
Global anthropogenic emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service simulations of air quality forecasts and reanalyses
Anthropogenic emissions are the result of many different economic sectors, including transportation, power generation, industrial, residential and commercial activities, waste treatment and agricultural practices. Air quality models are used to forecast the atmospheric composition, analyze observations and reconstruct the chemical composition of the atmosphere during the previous decades. In order to drive these models, gridded emissions of all compounds need to be provided. This paper describes a new global inventory of emissions called CAMS-GLOB-ANT, developed as part of the Copernicus Atmosphere Monitoring Service (CAMS; https://doi.org/10.24380/eets-qd81, Soulie et al., 2023). The inventory provides monthly averages of the global emissions of 36 compounds, including the main air pollutants and greenhouse gases, at a spatial resolution of 0.1Β°βΓβ0.1Β° in latitude and longitude, for 17 emission sectors. The methodology to generate the emissions for the 2000β2023 period is explained, and the datasets are analyzed and compared with publicly available global and regional inventories for selected world regions. Depending on the species and regions, good agreements as well as significant differences are highlighted, which can be further explained through an analysis of different sectors as shown in the figures in the Supplement.</p
Low unspliced cell-associated HIV RNA in early treated adolescents living with HIV on long suppressive ART
Introduction: Initiation of antiretroviral treatment (ART) in patients early after HIV-infection and long-term suppression leads to low or undetectable levels of HIV RNA and cell-associated (CA) HIV DNA and RNA. Both CA-DNA and CA-RNA, overestimate the size of the HIV reservoir but CA-RNA as well as p24/cell-free viral RNA can be indicators of residual viral replication. This study describes HIV RNA amounts and levels of cytokines/soluble markers in 40 well-suppressed adolescents who initiated ART early in life and investigated which viral markers may be informative as endpoints in cure clinical trials within this population.
//
Methods: Forty adolescents perinatally infected with HIV on suppressive ART for >5 years were enrolled in the CARMA study. HIV DNA and total or unspliced CA-RNA in PBMCs were analyzed by qPCR/RT-qPCR and dPCR/RT-dPCR. Cell-free HIV was determined using an ultrasensitive viral load (US-VL) assay. Plasma markers and p24 were analyzed by digital ELISA and correlations between total and unspliced HIV RNA and clinical markers, including age at ART, Western Blot score, levels of cytokines/inflammation markers or HIV CA-DNA, were tested.
//
Results: CA-RNA was detected in two thirds of the participants and was comparable in RT-qPCR and RT-dPCR. Adolescents with undetectable CA-RNA showed significantly lower HIV DNA compared to individuals with detectable CA-RNA. Undetectable unspliced CA-RNA was positively associated with age at ART initiation and Western Blot score. We found that a higher concentration of TNF-Ξ± was predictive of higher CA-DNA and CA-RNA. Other clinical characteristics like US-VL, time to suppression, or percent CD4+ T-lymphocytes were not predictive of the CA-RNA in this cross-sectional study.
//
Conclusions: Low CA-DNA after long-term suppressive ART is associated with lower CA-RNA, in concordance with other reports. Patients with low CA-RNA levels in combination with low CA-DNA and low Western Blot scores should be further investigated to characterize candidates for treatment interruption trials. Unspliced CA-RNA warrants further investigation as a marker that can be prioritized in paediatric clinical trials where the sample volume can be a significant limitation
Polymorphism in Gag Gene Cleavage Sites of HIV-1 Non-B Subtype and Virological Outcome of a First-Line Lopinavir/Ritonavir Single Drug Regimen
Virological failure on a boosted-protease inhibitor (PI/r) first-line triple combination is usually not associated with the detection of resistance mutations in the protease gene. Thus, other resistance pathways are being investigated. First-line PI/r monotherapy is the best model to investigate in vivo if the presence of mutations in the cleavage sites (CS) of gag gene prior to any antiretroviral treatment might influence PI/r efficacy. 83 patients were assigned to initiate antiretroviral treatment with first-line lopinavir/r monotherapy in the randomised Monark trial. We compared baseline sequence of gag CS between patients harbouring B or non-B HIV-1 subtype, and between those who achieved viral suppression and those who experienced virological failure while on LPV/r monotherapy up to Week 96. Baseline sequence of gag CS was available for 82/83 isolates; 81/82 carried at least one substitution in gag CS compared to HXB2 sequence. At baseline, non-B subtype isolates were significantly more likely to harbour mutations in gag CS than B subtype isolates (p<0.0001). Twenty-three patients experienced virological failure while on lopinavir/r monotherapy. The presence of more than two substitutions in p2/NC site at baseline significantly predicted virological failure (pβ=β0.0479), non-B subtype isolates being more likely to harbour more than two substitutions in this specific site. In conclusion, gag cleavage site was highly polymorphic in antiretroviral-naive patients harbouring a non-B HIV-1 strain. We show that pre-therapy mutations in gag cleavage site sequence were significantly associated with the virological outcome of a first-line LPV/r single drug regimen in the Monark trial
Attraction Basins as Gauges of Robustness against Boundary Conditions in Biological Complex Systems
One fundamental concept in the context of biological systems on which researches have flourished in the past decade is that of the apparent robustness of these systems, i.e., their ability to resist to perturbations or constraints induced by external or boundary elements such as electromagnetic fields acting on neural networks, micro-RNAs acting on genetic networks and even hormone flows acting both on neural and genetic networks. Recent studies have shown the importance of addressing the question of the environmental robustness of biological networks such as neural and genetic networks. In some cases, external regulatory elements can be given a relevant formal representation by assimilating them to or modeling them by boundary conditions. This article presents a generic mathematical approach to understand the influence of boundary elements on the dynamics of regulation networks, considering their attraction basins as gauges of their robustness. The application of this method on a real genetic regulation network will point out a mathematical explanation of a biological phenomenon which has only been observed experimentally until now, namely the necessity of the presence of gibberellin for the flower of the plant Arabidopsis thaliana to develop normally
The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells
<p>Abstract</p> <p>Background</p> <p>Heparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit <it>in vitro </it>and <it>in vivo </it>the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop.</p> <p>Methods</p> <p>A total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. <it>In vitro</it>, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. <it>In vivo</it>, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. <it>In vivo </it>anti-angiogenic effect was confirmed using a mouse Matrigelβ’ plug assay.</p> <p>Results</p> <p>Using pull down experiments, we identified the HARP receptors RPTPΞ²/ΞΆ, ALK and nucleolin as P111-136 binding proteins. <it>In vitro</it>, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an <it>in vivo </it>Matrigelβ’ plug assay in mice</p> <p>Conclusions</p> <p>Our results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on <it>in vitro </it>and <it>in vivo </it>growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTPΞ²/ΞΆ, nucleolin). <it>In vivo</it>, the P111-136 treatment significantly inhibits both the PC-3 tumour growth and the associated angiogenesis. Thus, P111-136 may be considered as an interesting pharmacological tool to interfere with tumour growth that has now to be evaluated in other cancer types.</p
Different Chitin Synthase Genes Are Required for Various Developmental and Plant Infection Processes in the Rice Blast Fungus Magnaporthe oryzae
Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases
- β¦