1,026 research outputs found

    Asynchronous student engagement in analysis of climate data achieves learning objectives related to climate change understanding, statistical competence, and climate anxiety

    Get PDF
    Learning in asynchronous online environments has gained importance over the last several decades, and educational environment shifts from the COVID-19 pandemic appear to have increased this need. Science educators and students need information about which approaches work in the asynchronous environment where informal feedback tends to be reduced, compared to other teaching modalities. In this study, we asynchronously implemented a learning module across 5 institutions that guided students (N = 199) from prescriptive data analysis through guided inquiry and eventually to open inquiry. The module focuses on the science behind climate change. Students work with the same authentic data sets used by professional scientists to examine geologic history and causes of climate change. By analyzing contemporary atmospheric carbon dioxide and temperature data and then using the 800,000-year record available from the Vostok ice core proxy record of atmospheric properties, students identify the causes of climate change and discover the unprecedented nature of recent atmospheric changes. Using a pre/post-module assessment, we demonstrate improvement in students’ understanding of climate change processes and statistical methods used to analyze data. However, there was no evidence that the module develops students’ scientific reasoning about the relationship between causation and correlation. Students maintained that correlation is not causation, even when a robust causal mechanism (i.e., the greenhouse effect) explains the link between atmospheric carbon dioxide and temperature. Finally, our analysis indicated that generally, anxiety about climate change was reduced during the module, such that students become less anxious about the climate change the more they learn about it. However, science-denying students experienced much higher anxiety about climate change than students who accepted the scientific consensus about climate change. Climate science-dissenting students were so few in this study that a statistical comparison was not possible, but this intriguing finding warrants further investigation of the role of anxiety in science denial. Mainly, this study demonstrates how asynchronous online learning environments can indeed support the achievement of learning objectives related to conducting authentic science, such as increasing understanding of climate change and statistical concepts, all while not provoking anxiety about climate change

    A four‐component classification of uncertainties in biological invasions: implications for management

    Get PDF
    Although uncertainty is an integral part of any science, it raises doubts in public perception about scientific evidence, is exploited by denialists, and therefore potentially hinders the implementation of management actions. As a relatively young field of study, invasion science contains many uncertainties. This may explain why, despite international policies aimed at mitigating biological invasions, the implementation of national- and regional-scale measures to prevent or control alien species has done little to slow the increase in extent of invasions and the magnitude of impacts. Uncertainty is therefore a critical aspect of invasion science that should be addressed to enable the field to progress further. To improve how uncertainties in invasion science are captured and characterized, we propose a framework, which is also applicable to other applied research fields such as climate and conservation science, divided into four components: the need (1) to clearly circumscribe the phenomenon, (2) to measure and provide evidence for the phenomenon (i.e., confirmation), (3) to understand the mechanisms that cause the phenomenon, and (4) to understand the mechanisms through which the phenomenon results in consequences. We link these issues to three major types of uncertainty: linguistic, psychological, and epistemic. The application of this framework shows that the four components tend to be characterized by different types of uncertainty in invasion science.We explain how these uncertainties can be detrimental to the implementation of management measures and propose ways to reduce them. Since biological invasions are increasingly tightly embedded in complex socio-ecological systems, many problems associated with these uncertainties have convoluted solutions. They demand the consensus of many stakeholders to define and frame the dimensions of the phenomenon, and to decide on appropriate actions. While many of the uncertainties cannot be eliminated completely, we believe that using this framework to explicitly identify and communicate them will help to improve collaboration between researchers and managers, increase scientific, political, and public support for invasion research, and provide a stronger foundation for sustainable management strategies

    Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science

    Full text link
    Ocean observing systems are well-recognized as platforms for long-term monitoring of near-shore and remote locations in the global ocean. High-quality observatory data is freely available and accessible to all members of the global oceanographic community—a democratization of data that is particularly useful for early career scientists (ECS), enabling ECS to conduct research independent of traditional funding models or access to laboratory and field equipment. The concurrent collection of distinct data types with relevance for oceanographic disciplines including physics, chemistry, biology, and geology yields a unique incubator for cutting-edge, timely, interdisciplinary research. These data are both an opportunity and an incentive for ECS to develop the computational skills and collaborative relationships necessary to interpret large data sets. Here, we use observatory data to demonstrate the potential for these interdisciplinary approaches by presenting a case study on the water-column response to anomalous atmospheric events (i.e., major storms) on the shelf of the Mid-Atlantic Bight southwest of Cape Cod, United States. Using data from the Ocean Observatories Initiative (OOI) Pioneer Array, we applied a simple data mining method to identify anomalous atmospheric events over a four-year period. Two closely occurring storm events in late 2018 were then selected to explore the dynamics of water-column response using mooring data from across the array. The comprehensive ECS knowledge base and computational skill sets allowed identification of data issues in the OOI data streams and technologically sound characterization of data from multiple sensor packages to broadly characterize ocean-atmosphere interactions. An ECS-driven approach that emphasizes collaborative and interdisciplinary working practices adds significant value to existing datasets and programs such as OOI and has the potential to produce meaningful scientific advances. Future success in utilizing ocean observatory data requires continued investment in ECS education, collaboration, and research; in turn, the ECS community provides feedback, develops knowledge, and builds new tools to enhance the value of ocean observing systems. These findings present an argument for building a community of practice to augment ECS ocean scientist skills and foster collaborations to extend the context, reach, and societal utility of ocean science

    Reconstructed Dynamics of Rapid Extinctions of Chaparral-Requiring Birds in Urban Habitat Islands

    Full text link
    The distribution of native, chaparral-requiring bird species was determined for 37 isolated fragments of canyon habitat ranging in size from 0.4 to 104 hectares in coastal, urban San Diego County, California The area of chaparral habitat and canyon age (time since isolation of the habitat fragment) explains most of the variation in the number of chaparral-requiring bird species. In addition, the distribution of native predators may influence species number. There is statistical evidence that coyotes control the populations of smaller predators such as foxes and domestic cats. The absence of coyotes may lead to higher levels of predation by a process of mesopredator release. The distance of canyons from other patches of chaparral habitat does not add significantly to the explained variance in chaparral-requiring species number–probably because of the virtual inability of most chaparral-requiring species to disperse through developed areas and nonscrub habitats. These results and other lines of evidence suggest that chaparral-requiring birds in isolated canyons have very high rates of extinction, in part because of their low vagility. The best predictors of vulnerability of the individual species are their abundances (densities) in undisturbed habitat and their body sizes; together these two variables account for 95 percent of the variation in canyon occupancy. A hypothesis is proposed to account for the similarity between the steep slopes of species-area curves for chaparral-requiring birds and the slopes for some forest birds on small islands or in habitat fragments. The provision of corridors appears to be the most effective design and planning feature for preventing the elimination of chaparral-requiring species in a fragmented landscape.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74761/1/j.1523-1739.1988.tb00337.x.pd

    Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin

    Get PDF
    Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin

    Feasibility of Implementing a School Nutrition Intervention That Addresses Policies, Systems, and Environment

    Get PDF
    We conducted a process evaluation of the Shaping Healthy Choices Program, a multicomponent school-based nutrition program, when implemented in partnership with University of California (UC) CalFresh and UC Cooperative Extension (UCCE). There were positive impacts on participating students, but results varied across counties, possibly due to variation in fidelity to the curriculum and implementation of program components. Our evaluation identified the strength of UCCE in delivering nutrition education and a need for additional support and training for building capacity to effect change in school policies, systems, and environment. Because educators throughout Extension are working to integrate programs addressing policies, systems, and environment, our results may have applicability in other Extension programs
    corecore