152 research outputs found

    Graphic user interface for molecular dynamics simulation of thin films

    Get PDF
    En este trabajo se implementó el software de simulación para la nanoindentación de películas delgadas. El software desarrollado empleó la técnica de Dinámica Molecular. El modelo con el cual opera la interfaz gráfica (software), es un modelo aproximado, que reproduce las tendencias de las curvas características en pruebas de dureza de materiales. Por otro lado, el programa se diseñó y construyó con un entorno amigable, donde el usuario puede construir sus propias películas delgadas, tanto en monocapas como en bicapas. La interfaz permite controlar el espesor de la película, el número de capas y otras propiedades físicas tales como energía de disociación o parámetros de energía en la esfera; además, se puede tener control de los pasos de tiempo de dinámica. Para comprobar el funcionamiento del software se realizaron una serie de simulaciones utilizando los parámetros del cromo como material de referencia. Los resultados obtenidos, demostraron que el software puede reproducir las tendencias y curvas características en pruebas de dureza de materiales. Se espera mejorar este software para que sea una herramienta que permita realizar comparaciones con futuras investigaciones experimentales.In this work, a software for simulating nanoindentation in thin films was implemented. For the software constructions, the Molecular Dynamics technique was used. The model applied for the graphic interface (software) is an approximation that reproduces the characteristic curves tendencies in test of materials hardness; on the other hand, the software was designed and built in a friendly environment, where the user can develop its own thin films, not only in monolayers, but also in multilayers. This interface allows to control the film thickness, the number of layers and other physical properties as the dissociation energy or the energy parameter in the sphere; furthermore, it is possible to control the steps of the dynamical time. For ensuring the proper working of the software, several simulations using the chromium parameters as the reference material were carried out, reproducing experimental tendencies

    Influence of Fe doping and magnetic field on martensitic transition in Ni–Mn–Sn melt-spun ribbons

    Get PDF
    "Mn-rich Ni-Mn-Sn metamagnetic shape memory alloys exhibiting magnetostructural transformation are of a great potential as the base materials for solid-state refrigeration. With the aim of fine tuning of the transformation characteristics and improving functional properties, in the present work we have fabricated polycrystalline Ni50-xFexMn40Sn10 (x = 0, 2, 4, 6, 8 at.%) melt-spun ribbons, starting from the base alloy with x = 0, which is weakly magnetic in both austenitic and martensitic phases. By exploring martensitic transformation (MT) and magnetic behaviors as a function of Fe doping and magnetic field, we have found that Fe and/or magnetic field reduce the MT temperature and Curie temperature of austenite phase, becoming closer to each other as the Fe-content increases, accompanied by an increase of the magnetic moment of austenite, magnetization jump at MT, transformation volume, and magnetic contribution, Delta S-M, to the total entropy change at MT. The ribbons present moderate values of Delta S-M equal to 11 J kg(-11)K(-1) at 5 T for x = 8, moderate thermal hysteresis (10-14 K) nearly independent of Fe doping or magnetic field, and adjustable structural and magnetic transition temperatures close to room temperature. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

    Simulación de propiedades mecánicas demulticapas de Zr/ZrN y TiN/ZrNempleando el método de elementos finitos

    Get PDF
    In this work mechanical properties of Zr/ZrN and TiN/ZrN multilayers varying the bilayerd number in 1, 2, 5 and 10, that is, multilayer periods of 2, 1, 0.4 y 0.2 μm, with thickness constant of 2 μm in a ratio 1:1 y 1:3 were studied. For the simulation the ANSYS software was employed, based on the finite elements method. Strain–stress curves, the hardness and Young’s Modulus were obtained as function of the bilayer numbers. According, the analysis carried out, the TiN/ZrN bilayers with 1:3 ratio presented the highest hardness (31±1 GPa) regarding the others and a Young’s modulus approximately of 460 GPa. Results obtained from the mechanical properties simulations of materials |based on Ti and Zr, by using methods like finite elements are promising in the new materials field, in order to predict their performance in industrial and technological applications as hard coatings grown on several tools and machine pieces and from this way reducing the production costs. Moreover, simulations presented in this work can be extended to systems composed by other materials with great utilization.PACS: 47.11.Fg, 73.21.Ac, 87.15.La, 81.40.Lm, 81.70.Bt, 81.70.PgMSC: 76M10En este trabajo se presenta el estudio de propiedades mecánicas de multicapas de Zr/ZrN y TiN/ZrN variando el número de bicapas en 1, 2, 5 y 10, es decir, períodos de 2, 1, 0,4 y 0,2 μm, con espesor constante de 2 μm en una relación de 1:1 y 1:3. Para esta simulación se empleó el software ANSYS, el cual se basa en el método de elementos finitos. Se obtuvieron curvas de Esfuerzo– Deformación, dureza y módulo de Young en función del número de bicapas. De acuerdo al análisis realizado, las bicapas de TiN/ZrN con relación 1:3 presentan mayor dureza (31±1 GPa) en relación a los demás sistemas y un módulo de Young de aproximadamente 460 GPa. Los resultados de las simulaciones de las propiedades mecánicas de materiales basados en Ti y Zr, empleando métodos como el de elementos finitos, son prometedores en el campo de los nuevos materiales para predecir su desempeño en aplicaciones tecnológicas e industriales como recubrimientos duros sobre diferentes herramientas y piezas de maquinaria y así disminuir costos de producción. Además, las simulaciones presentadas en este trabajo pueden extenderse a sistemas compuestos de otros materiales de gran utilidad.PACS: 47.11.Fg, 73.21.Ac, 87.15.La, 81.40.Lm, 81.70.Bt, 81.70.PgMSC: 76M1

    Simulación de propiedades mecánicas demulticapas de Zr/ZrN y TiN/ZrNempleando el método de elementos finitos

    Get PDF
    This paper presents the study of mechanical properties of multilayers of Zr / ZrN and TiN / ZrN by varying the number of bilayers in 1, 2, 5 and 10, that is, periods of 2, 1, 0.4 and 0.2 μm, with a constant thickness of 2 μm in a ratio of 1: 1 and 1: 3. For this simulation, the ANSYS software was used, which is based on the finite element method. Effort curves were obtained - Deformation, hardness and Young's modulus depending on the number of bilayers. According to the analysis performed, the TiN / ZrN bilayers with a 1: 3 ratio have greater hardness (31 ± 1 GPa) in relation to the other systems and a Young's modulus of approximately 460 GPa. The results of the simulations of the mechanical properties of Ti and Zr-based materials, using methods such as finite elements, are promising in the field of new materials to predict their performance in technological and industrial applications such as hard coatings on different tools and pieces of machinery and thus reduce production costs. In addition, the simulations presented in this work can be extended to systems composed of other useful materials.En este trabajo se presenta el estudio de propiedades mecánicas de multicapas de Zr/ZrN y TiN/ZrN variando el número de bicapas en 1, 2, 5 y 10, es decir, períodos de 2, 1, 0,4 y 0,2 μm, con espesor constante de 2 μm en una relación de 1:1 y 1:3. Para esta simulación se empleó el software ANSYS, el cual se basa en el método de elementos finitos. Se obtuvieron curvas de Esfuerzo– Deformación, dureza y módulo de Young en función del número de bicapas. De acuerdo al análisis realizado, las bicapas de TiN/ZrN con relación 1:3 presentan mayor dureza (31±1 GPa) en relación a los demás sistemas y un módulo de Young de aproximadamente 460 GPa. Los resultados de las simulaciones de las propiedades mecánicas de materiales basados en Ti y Zr, empleando métodos como el de elementos finitos, son prometedores en el campo de los nuevos materiales para predecir su desempeño en aplicaciones tecnológicas e industriales como recubrimientos duros sobre diferentes herramientas y piezas de maquinaria y así disminuir costos de producción. Además, las simulaciones presentadas en este trabajo pueden extenderse a sistemas compuestos de otros materiales de gran utilidad

    Epicure: a European epidemiological study of patients with an advanced or metastatic Urothelial Carcinoma (UC) having progressed to a platinum-based chemotherapy

    Get PDF
    Background: Platinum-based systemic chemotherapy is considered the backbone for management of advanced urothelial carcinomas. However there is a lack of real world data on the use of such chemotherapy regimens, on patient profiles and on management after treatment failure. Methods: Fifty-one randomly selected physicians from 4 European countries registered 218 consecutive patients in progression or relapse following a first platinum-based chemotherapy. Patient characteristics, tumor history and treatment regimens, as well as the considerations of physicians on the management of urothelial carcinoma were recorded. Results: A systemic platinum-based regimen had been administered as the initial chemotherapy in 216 patients: 15 in the neoadjuvant setting, 61 in adjuvant therapy conditions, 137 in first-line advanced setting and 3 in other conditions. Of these patients, 76 (35 %) were initially considered as cisplatin-unfit, mainly because of renal impairment (52 patients). After platinum failure, renal impairment was observed in 44 % of patients, ECOG Performance Status ≥ 2 in 17 %, hemoglobinemia 30 % patients). The most frequent all-settings second anticancer therapy regimen was vinflunine (70 % of single-agent and 42 % of all subsequent treatments), the main reasons evoked by physicians (>1 out of 4) being survival benefit, safety and phase III evidence. Conclusion: In this daily practice experience, a majority of patients with urothelial carcinoma previously treated with a platinum-based therapy received a second chemotherapy regimen, most often a single agent after an initial chemotherapy in the advanced setting and preferably a cytotoxic combination after a neoadjuvant or adjuvant chemotherapy. Performance Status and prior response to chemotherapy were the main drivers of further treatment decisions

    High prevalence and early occurrence of skeletal complications in EGFR mutated NSCLC patients with bone metastases

    Get PDF
    Objectives: The prevalence of Skeletal Related Adverse Events (SREs) in EGFR mutated non-small cell lung cancer (NSCLC) patients with bone metastases, treated with modern tyrosine kinase inhibitors (TKIs), has been scarcely investigated. Materials and Methods: We retrospectively evaluated the data of EGFR mutated NSCLC patients with bone metastases treated with TKIs in 12 Italian centers from 2014 to 2019, with the primary aim to explore type and frequency of SREs. Results: Seventy-seven out of 274 patients enrolled (28%) developed at least one major SRE: 55/274 (20%) bone fractures, 30/274 (11%) spinal cord compression, 5/274 (2%) hypercalcemia. Median time to the onset of SRE was 3.63 months. Nine patients (3%) underwent bone surgery and 150 (55%) radiation therapy on bone. SREs were more frequently observed within the 12 months from TKI start than afterwards (71 vs 29%, p 0.000). Patient Performance Status and liver metastases where independently associated with the risk of developing SREs. Median TKI exposure and overall survival were 11 and 28 months, respectively. Bone resorption inhibitors were associated with a lower risk of death (HR 0.722, 95% CI: 0.504–1.033, p = 0.075) although not statistically significant at multivariate analysis. Conclusion: Bone metastatic NSCLC patients with EGFR mutated disease, treated with EGFR TKIs, have a relatively long survival expectancy and are at high risk to develop SREs. The early SRE occurrence after the TKI start provides the rationale to administer bone resorption inhibitors

    Diet-related inflammation is associated with worse COVID-19 outcomes in the UK biobank cohort

    Get PDF
    Diet, the most important modulator of inflammatory and immune responses, may affect COVID-19 incidence and disease severity. Data from 196,154 members of the UK biobank had at least one 24 h dietary recall. COVID-19 outcomes were based on PCR testing, hospital admissions, and death certificates. Adjusted Poisson regression analyses were performed to estimate the risk ratios (RR) and their 95% confidence intervals (CI) for dietary inflammatory index (DII)/energy-adjusted DII (E-DII) scores. Models were adjusted for sociodemographic factors, comorbidities, smoking status, physical activity, and sleep duration. Between January 2020 and March 2021, there were 11,288 incident COVID-19 cases, 1270 COVID-19-related hospitalizations, and 315 COVID-19-related deaths. The fully adjusted model showed that participants in the highest (vs. lowest) DII/E-DII quintile were at 10–17% increased risk of COVID-19 (DII: RR Q5 vs. Q1 = 1.10, 95% CI 1.04–1.17, Ptrend < 0.001; E-DII: RR Q5 vs. Q1 = 1.17, 95% CI 1.10–1.24, Ptrend < 0.001) and ≈40% higher risk was observed for disease severity (DII: RR Q5 vs. Q1 = 1.40, 95% CI 1.18–1.67, Ptrend < 0.001; E-DII: RR Q5 vs. Q1 = 1.39, 95% CI 1.16–1.66, Ptrend < 0.001). There was a 43% increased risk of COVID-19-related death in the highest DII quintile (RR Q5 vs. Q1 = 1.43, 95% CI 1.01–2.01, Ptrend = 0.04). About one-quarter of the observed positive associations between DII and COVID-19-related outcomes were mediated by body mass index (25.8% for incidence, 21.6% for severity, and 19.8% for death). Diet-associated inflammation increased the risk of COVID-19 infection, severe disease, and death

    In Search of Critically Endangered Species: The Current Situation of Two Tiny Salamander Species in the Neotropical Mountains of Mexico

    Get PDF
    Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide

    Virtual Multidisciplinary Tumor Boards: A Narrative Review Focused on Lung Cancer

    Get PDF
    To date, the virtual multidisciplinary tumor boards (vMTBs) are increasingly used to achieve high-quality treatment recommendations across health-care regions, which expands and develops the local MTB team to a regional or national expert network. This review describes the process of lung cancer-specific MTBs and the transition process from face-to-face tumor boards to virtual ones. The review also focuses on the project organization's description, advantages, and disadvantages. Semi-structured interviews identified five major themes for MTBs: current practice, attitudes, enablers, barriers, and benefits for the MTB. MTB teams exhibited positive responses to modeled data feedback. Virtualization reduces time spent for travel, allowing easier and timely patient discussions. This process requires a secure web platform to assure the respect of patients’ privacy and presents the same unanswered problems. The implementation of vMTB also permits the implementation of networks especially in areas with geographical barriers facilitating interaction between large referral cancer centers and tertiary or community hospitals as well as easier access to clinical trial opportunities. Studies aimed to improve preparations, structure, and conduct of MTBs, research methods to monitor their performance, teamwork, and outcomes are also outlined in this article. Analysis of literature shows that MTB participants discuss 5–8 cases per meeting and that the use of a vMTB for lung cancer and in particular stage III NSCLC and complex stage IV cases is widely accepted by most health professionals. Despite still-existing gaps, overall vMTB represents a unique opportunity to optimize patient management in a patient-centered approach
    corecore