266 research outputs found

    Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer's disease

    Get PDF
    The vascular contributions to neurodegeneration and neuroinflammation may be assessed by magnetic resonance imaging (MRI) and ultrasonography (US). This review summarises the methodology for these widely available, safe and relatively low cost tools and analyses recent work highlighting their potential utility as biomarkers for differentiating subtypes of cognitive impairment and dementia, tracking disease progression and evaluating response to treatment in various neurocognitive disorders. METHODS: At the 9th International Congress on Vascular Dementia (Ljubljana, Slovenia, October 2015) a writing group of experts was formed to review the evidence on the utility of US and arterial spin labelling (ASL) as neurophysiological markers of normal ageing, vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Original articles, systematic literature reviews, guidelines and expert opinions published until September 2016 were critically analysed to summarise existing evidence, indicate gaps in current knowledge and, when appropriate, suggest standards of use for the most widely used US and ASL applications. RESULTS: Cerebral hypoperfusion has been linked to cognitive decline either as a risk or an aggravating factor. Hypoperfusion as a consequence of microangiopathy, macroangiopathy or cardiac dysfunction can promote or accelerate neurodegeneration, blood-brain barrier disruption and neuroinflammation. US can evaluate the cerebrovascular tree for pathological structure and functional changes contributing to cerebral hypoperfusion. Microvascular pathology and hypoperfusion at the level of capillaries and small arterioles can also be assessed by ASL, an MRI signal. Despite increasing evidence supporting the utility of these methods in detection of microvascular pathology, cerebral hypoperfusion, neurovascular unit dysfunction and, most importantly, disease progression, incomplete standardisation and missing validated cut-off values limit their use in daily routine. CONCLUSIONS: US and ASL are promising tools with excellent temporal resolution, which will have a significant impact on our understanding of the vascular contributions to VCI and AD and may also be relevant for assessing future prevention and therapeutic strategies for these conditions. Our work provides recommendations regarding the use of non-invasive imaging techniques to investigate the functional consequences of vascular burden in dementia

    Efficacy of Cerebral Autoregulation in Early Ischemic Stroke Predicts Smaller Infarcts and Better Outcome

    Get PDF
    © 2017 Castro, Serrador, Rocha, Sorond and Azevedo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Background and purpose: Effective cerebral autoregulation (CA) may protect the vulnerable ischemic penumbra from blood pressure fluctuations and minimize neurological injury. We aimed to measure dynamic CA within 6 h of ischemic stroke (IS) symptoms onset and to evaluate the relationship between CA, stroke volume, and neurological outcome. Methods: We enrolled 30 patients with acute middle cerebral artery IS. Within 6 h of IS, we measured for 10 min arterial blood pressure (Finometer), cerebral blood flow velocity (transcranial Doppler), and end-tidal-CO2. Transfer function analysis (coherence, phase, and gain) assessed dynamic CA, and receiver-operating curves calculated relevant cut-off values. National Institute of Health Stroke Scale was measured at baseline. Computed tomography at 24 h evaluated infarct volume. Modified Rankin Scale (MRS) at 3 months evaluated the outcome. Results: The odds of being independent at 3 months (MRS 0–2) was 14-fold higher when 6 h CA was intact (Phase > 37°) (adjusted OR = 14.0 (IC 95% 1.7–74.0), p = 0.013). Similarly, infarct volume was significantly smaller with intact CA [median (range) 1.1 (0.2–7.0) vs 13.1 (1.3–110.5) ml, p = 0.002]. Conclusion: In this pilot study, early effective CA was associated with better neurological outcome in patients with IS. Dynamic CA may carry significant prognostic implications.This study was part of Ph.D. thesis of PC and received publiC national grant from Fundação para a Ciência e a Tecnologia (FCT), Portugal, PTDC/SAU-ORG/113329/2009. FS is supported by R01 NS085002 (NINDS).info:eu-repo/semantics/publishedVersio

    Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans

    Get PDF
    Farzaneh A Sorond1,2, Lewis A Lipsitz2,4, Norman K Hollenberg3,5, Naomi DL Fisher31Department of Neurology, Stroke Division; 2Institute for Aging Research, Hebrew SeniorLife, Boston, MA; 3Department of Medicine, Endocrine-Hypertension Division; 4Department of Medicine, Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, USA; 5Department of Radiology, Brigham and Women’s Hospital, Boston, MABackground and Purpose: Cerebral ischemia is a common, morbid condition accompanied by cognitive decline. Recent reports on the vascular health benefits of flavanol-containing foods signify a promising approach to the treatment of cerebral ischemia. Our study was designed to investigate the effects of flavanol-rich cocoa (FRC) consumption on cerebral blood flow in older healthy volunteers.Methods: We used transcranial Doppler (TCD) ultrasound to measure mean blood flow velocity (MFV) in the middle cerebral artery (MCA) in thirty-four healthy elderly volunteers (72 ± 6 years) in response to the regular intake of FRC or flavanol-poor cocoa (FPC).Results: In response to two weeks of FRC intake, MFV increased by 8% ± 4% at one week (p = 0.01) and 10% ± 4% (p = 0.04) at two weeks. In response to one week of cocoa, significantly more subjects in the FRC as compared with the FPC group had an increase in their MFV (p < 0.05).Conclusions: In summary, we show that dietary intake of FRC is associated with a significant increase in cerebral blood flow velocity in the MCA as measured by TCD. Our data suggest a promising role for regular cocoa flavanol’s consumption in the treatment of cerebrovascular ischemic syndromes, including dementias and stroke.Keywords: cerebral blood flow, flavanol, cocoa, transcranial Doppler ultrasoun

    Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort

    Get PDF
    Cocoa flavanols (CF) positively influence physiological processes in ways that suggest their consumption may improve aspects of cognitive function. This study investigated the acute cognitive and subjective effects of CF consumption during sustained mental demand. In this randomized, controlled, double-blinded, balanced, three period crossover trial 30 healthy adults consumed drinks containing 520 mg, 994 mg CF and a matched control, with a three-day washout between drinks. Assessments included the state anxiety inventory and repeated 10-min cycles of a Cognitive Demand Battery comprising of two serial subtraction tasks (Serial Threes and Serial Sevens), a Rapid Visual Information Processing (RVIP) task and a mental fatigue scale, over the course of 1 h. Consumption of both 520 mg and 994 mg CF significantly improved Serial Threes performance. The 994 mg CF beverage significantly speeded RVIP responses but also resulted in more errors during Serial Sevens. Increases in self-reported mental fatigue were significantly attenuated by the consumption of the 520 mg CF beverage only. This is the first report of acute cognitive improvements following CF consumption in healthy adults. While the mechanisms underlying the effects are unknown they may be related to known effects of CF on endothelial function and blood flow

    Dynamic cerebral autoregulation after intracerebral hemorrhage: A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dynamic cerebral autoregulation after intracerebral hemorrhage (ICH) remains poorly understood. We performed a case-control study to compare dynamic autoregulation between ICH patients and healthy controls.</p> <p>Methods</p> <p>Twenty-one patients (66 ± 15 years) with early (< 72 hours) lobar or basal ganglia ICH were prospectively studied and compared to twenty-three age-matched controls (65 ± 9 years). Continuous measures of mean flow velocity (MFV) in the middle cerebral artery and mean arterial blood pressure (MAP) were obtained over 5 min. Cerebrovascular resistance index (CVR<sub>i</sub>) was calculated as the ratio of MAP to MFV. Dynamic cerebral autoregulation was assessed using transfer function analysis of spontaneous MAP and MFV oscillations in the low (0.03-0.15 Hz) and high (0.15-0.5 Hz) frequency ranges.</p> <p>Results</p> <p>The ICH group demonstrated higher CVR<sub>i </sub>compared to controls (ipsilateral: 1.91 ± 1.01 mmHg·s·cm<sup>-1</sup>, <it>p </it>= 0.04; contralateral: 2.01 ± 1.24 mmHg·s·cm<sup>-1</sup>, <it>p </it>= 0.04; vs. control: 1.42 ± 0.45 mmHg·s·cm<sup>-1</sup>). The ICH group had higher gains than controls in the low (ipsilateral: 1.33 ± 0.58%/mmHg, <it>p </it>= 0.0005; contralateral: 1.47 ± 0.98%/mmHg, <it>p </it>= 0.004; vs. control: 0.82 ± 0.30%/mmHg) and high (ipsilateral: 2.11 ± 1.31%/mmHg, <it>p </it>< 0.0001; contralateral: 2.14 ± 1.49%/mmHg, <it>p </it>< 0.0001; vs. control: 0.66 ± 0.26%/mmHg) frequency ranges. The ICH group also had higher coherence in the contralateral hemisphere than the control (ICH contralateral: 0.53 ± 0.38, <it>p </it>= 0.02; vs. control: 0.38 ± 0.15) in the high frequency range.</p> <p>Conclusions</p> <p>Patients with ICH had higher gains in a wide range of frequency ranges compared to controls. These findings suggest that dynamic cerebral autoregulation may be less effective in the early days after ICH. Further study is needed to determine the relationship between hematoma size and severity of autoregulation impairment.</p

    Walking speed, cognitive function and dementia risk in the English Longitudinal Study

    Get PDF
    Background: Physical and cognitive function decline with age. Slow walking speed has been associated with negative health outcomes and dementia is often preceded by cognitive decline. This study investigated walking speed, cognitive function and the interaction between changes in these measures in relation to dementia risk. Method: Walking speed and cognition were assessed in 3,932 individuals aged ≥60 years at wave 1 (2002-03) and 2 (2004-05) of the English Longitudinal Study of Ageing. New dementia cases were assessed from wave 3 (2006-07) to wave 7 (2014-15). The associations were modelled using Cox proportional hazards regression. Results: Participants with faster baseline walking speeds (HR 0.36; 95% CI 0.22 - 0.60) had a decreased risk of dementia. Those who had a greater decline in walking speed (waves 1 - 2 (HR 1.23; 95% CI 1.03 - 1.47) had an increased dementia risk. Participants with greater baseline cognition (HR 0.42; 95% CI 0.34 - 0.54) had a reduced dementia risk. Those who had a greater decline in cognition (waves 1-2) had a greater risk of dementia (HR 1.78; 95% CI 36 1.53 - 2.06). Change in walking speed and change in cognition did not interact significantly in relation to dementia risk (HR 1.01; 95% CI 0.88 – 1.17). Conclusions: In this community-dwelling sample of English adults those with slower walking speeds and a greater decline in speed over time had an increased risk of developing dementia independent of changes in cognition. Further research is required to understand the mechanisms that may drive these associations

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Expanding the horizon of research into the pathogenesis of the white matter diseases: Proceedings of the 2021 Annual Workshop of the Albert Research Institute for White Matter and Cognition

    Get PDF
    White matter pathologies are critically involved in the etiology of vascular cognitive impairment–dementia (VCID), Alzheimer’s disease (AD), and Alzheimer’s disease and related diseases (ADRD), and therefore need to be considered a treatable target (Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet]. 2020 Apr 27;77(7):793–4, [1]. To help address this often-missed area of research, several workshops have been sponsored by the Leo and Anne Albert Charitable Trust since 2015, resulting in the incorporation of “The Albert Research Institute for White Matter and Cognition” in 2020. The first annual “Institute” meeting was held virtually on March 3–4, 2021. The Institute provides a forum and workspace for communication and support of the advancement of white matter science and research to better understand the evolution and prevention of dementia. It serves as a platform for young investigator development, to introduce new data and debate biology mechanisms and new ideas, and to encourage and support new research collaborations and directions to clarify how white matter changes, with other genetic and health risk factors, contribute to cognitive impairment. Similar to previous Albert Trust–sponsored workshops (Barone et al. in J Transl Med 14:1–14, [2]; Sorond et al. in GeroScience 42:81–96, [3]), established expert investigators were identified and invited to present. Opportunities to attend and present were also extended by invitation to talented research fellows and younger scientists. Also, updates on institute-funded research collaborations were provided and discussed. The summary that follows is a synopsis of topics and discussion covered in the workshop
    corecore