1,235 research outputs found

    Importance of international scientific contacts in Tomsk scientific community as the factor of physics research development in the 1970-1980-ies

    Get PDF
    The article is devoted to historical reconstruction of the international contacts and communications of Tomsk scientific community in the 1970-1980s. Siberian Physical-Technical Institute (SPhTI) was a large center of basic and applied research development in the field of solid state physics, cybernetics, radio electronics and scientific staff training in the USSR. The author analyses the main forms of cooperation between SPhTI and foreign scientific research institutes and higher education institutions, the mechanism of foreign training organization, the forms of the state control on international scientific and educational contacts. The value of SPhTI’s international scientific contacts in developing research on physics is emphasized. SPhTI scientists

    The theoretical DFT study of electronic structure of thin Si/SiO2 quantum nanodots and nanowires

    Full text link
    The atomic and electronic structure of a set of proposed thin (1.6 nm in diameter) silicon/silica quantum nanodots and nanowires with narrow interface, as well as parent metastable silicon structures (1.2 nm in diameter), was studied in cluster and PBC approaches using B3LYP/6-31G* and PW PP LDA approximations. The total density of states (TDOS) of the smallest quasispherical silicon quantum dot (Si85) corresponds well to the TDOS of the bulk silicon. The elongated silicon nanodots and 1D nanowires demonstrate the metallic nature of the electronic structure. The surface oxidized layer opens the bandgap in the TDOS of the Si/SiO2 species. The top of the valence band and the bottom of conductivity band of the particles are formed by the silicon core derived states. The energy width of the bandgap is determined by the length of the Si/SiO2 clusters and demonstrates inverse dependence upon the size of the nanostructures. The theoretical data describes the size confinement effect in photoluminescence spectra of the silica embedded nanocrystalline silicon with high accuracy.Comment: 22 pages, 5 figures, 1 tabl

    Emperor Nicholas II and Tomsk University

    Get PDF
    The article is dedicated to the heir to the throne Nicholas Alexandrovich (the future Tsar Nicholas II) visiting Tomsk and the Imperial Tomsk University on July 5 and 6, 1891, while he was returning from his trip to the east. On the basis of the available scientific literature, documents, including those being introduced into scientific circulation for the first time, and the periodical press, the article reconstructs the history of the Tsar’s visit to Russia’s first higher education institution in Asia. The article is meant for those interested in the history of the Romanov kin as well as the history of higher learning and science in Russia

    Oxidized low-density lipoprotein associates with cardiovascular disease by a vicious cycle of atherosclerosis and inflammation: A systematic review and meta-analysis

    Get PDF
    BackgroundLow-density lipoprotein cholesterol (LDL-C) is an established marker for cardiovascular disease (CVD) and a therapeutic target. Oxidized LDL (oxLDL) is known to be associated with excessive inflammation and abnormal lipoprotein metabolism. Chronic inflammatory diseases confer an elevated risk of premature atherosclerosis and adverse cardiovascular events. Whether oxLDL may serve as a potential biomarker for CVD stratification in populations with chronic inflammatory conditions remains understudied.ObjectiveTo perform a systematic review and meta-analysis evaluating the relationship between oxLDL and CVD (defined by incident CVD events, carotid intima-media thickness, presence of coronary plaque) in patients with chronic inflammatory diseases.MethodsA systematic literature search was performed using studies published between 2000 and 2022 from PubMed, Cochrane Library, Embase (Elsevier), CINHAL (EBSCOhost), Scopus (Elsevier), and Web of Science: Core Collection (Clarivate Analytics) databases on the relationship between oxLDL and cardiovascular risk on inflamed population. The pooled effect size was combined using the random effect model and publication bias was assessed if P < 0.05 for the Egger or Begg test along with the funnel plot test.ResultsA total of three observational studies with 1,060 participants were ultimately included in the final meta-analysis. The results demonstrated that oxLDL is significantly increased in participants with CVD in the setting of chronic inflammatory conditions. This meta-analysis suggests that oxLDL may be a useful biomarker in risk stratifying cardiovascular disease in chronically inflamed patients

    Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    Get PDF
    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, ~99.53%. Only ~0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold

    Dissimilatory sulfate reduction in the archaeon ‘Candidatus Vulcanisaeta moutnovskia’ sheds light on the evolution of sulfur metabolism

    Get PDF
    Dissimilatory sulfate reduction (DSR)—an important reaction in the biogeochemical sulfur cycle—has been dated to the Palaeoarchaean using geological evidence, but its evolutionary history is poorly understood. Several lineages of bacteria carry out DSR, but in archaea only Archaeoglobus, which acquired DSR genes from bacteria, has been proven to catalyse this reaction. We investigated substantial rates of sulfate reduction in acidic hyperthermal terrestrial springs of the Kamchatka Peninsula and attributed DSR in this environment to Crenarchaeota in the Vulcanisaeta genus. Community profiling, coupled with radioisotope and growth experiments and proteomics, confirmed DSR by ‘Candidatus Vulcanisaeta moutnovskia’, which has all of the required genes. Other cultivated Thermoproteaceae were briefly reported to use sulfate for respiration but we were unable to detect DSR in these isolates. Phylogenetic studies suggest that DSR is rare in archaea and that it originated in Vulcanisaeta, independent of Archaeoglobus, by separate acquisition of qmoABC genes phylogenetically related to bacterial hdrA genes.This work was supported by the Russian Science Foundation (grant number 17-74-30025) and in part by the grant from the Russian Ministry of Science and Higher Education (to N.A.C., A.V.L., E.N.F., M.L.M., A.Y.M., N.V.P. and E.A.B.-O.). Sequencing of PCR amplicons was performed using the scientific equipment of the core research facility ‘Bioengineering’ by T. Kolganova. The proteomics analysis was performed at the Proteomics Facility of the Spanish National Center for Biotechnology (CNB-CSIC), which belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001 (to S.C., M.C.M. and M.F.). P.N.G. acknowledges funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC) within the ERA NET-IB2 programme, grant number ERA-IB-14-030 and the European Union Horizon 2020 Research and Innovation programme (Blue Growth: Unlocking the Potential of Seas and Oceans) under grant agreement number 634486, as well as support from the Centre for Environmental Biotechnology project, part funded by the European Regional Development Fund (ERDF) through the Welsh Government, and support from the Centre of Environmental Biotechnology. D.Y.S. was supported by the SIAM/Gravitation Program (Dutch Ministry of Education, Culture and Science; grant 24002002) and RFBR grant 19-04-00401. F.L.S. and S.N. acknowledge support from the Wiener Wissenschafts, Forschungs- und Technologiefonds (Austria) through the grant VRG15-007. F.L.S. gratefully acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement 803768). I.A.C.P. acknowledges support from the Fundação para a Ciência e Tecnologia (Portugal) through grant PTDC/BIA-BQM/29118/2017 and R&D unit MOSTMICRO-ITQB (UIDB/04612/2020 and UIDP/04612/2020)

    The influence of size effect on the electronic and elastic properties of diamond films with nanometer thickness

    Full text link
    The atomic structure and physical properties of few-layered oriented diamond nanocrystals (diamanes), covered by hydrogen atoms from both sides are studied using electronic band structure calculations. It was shown that energy stability linear increases upon increasing of the thickness of proposed structures. All 2D carbon films display direct dielectric band gaps with nonlinear quantum confinement response upon the thickness. Elastic properties of diamanes reveal complex dependence upon increasing of the number of layers. All theoretical results were compared with available experimental data.Comment: 16 pages, 5 figures, 3 table

    A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch

    Get PDF
    Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy- or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene-related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber-mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch
    corecore