2 research outputs found

    Costs and benefits of automation for astronomical facilities

    Full text link
    The Observatorio Astrof\'isico de Javalambre (OAJ{\dag}1) in Spain is a young astronomical facility, conceived and developed from the beginning as a fully automated observatory with the main goal of optimizing the processes in the scientific and general operation of the Observatory. The OAJ has been particularly conceived for carrying out large sky surveys with two unprecedented telescopes of unusually large fields of view (FoV): the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. The most immediate objective of the two telescopes for the next years is carrying out two unique photometric surveys of several thousands square degrees, J-PAS{\dag}2 and J-PLUS{\dag}3, each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure, exoplanets, among many others. To do that, JST and JAST are equipped with panoramic cameras under development within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (~ 10k x 10k) CCDs covering the entire focal plane. This paper describes in detail, from operations point of view, a comparison between the detailed cost of the global automation of the Observatory and the standard automation cost for astronomical facilities, in reference to the total investment and highlighting all benefits obtained from this approach and difficulties encountered. The paper also describes the engineering development of the overall facilities and infrastructures for the fully automated observatory and a global overview of current status, pinpointing lessons learned in order to boost observatory operations performance, achieving scientific targets, maintaining quality requirements, but also minimizing operation cost and human resources.Comment: Global Observatory Control System GOC

    J-PLUS: The javalambre photometric local universe survey

    Get PDF
    ABSTRACT: TheJavalambrePhotometric Local UniverseSurvey (J-PLUS )isanongoing 12-band photometricopticalsurvey, observingthousands of squaredegrees of theNorthernHemispherefromthededicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mountedon a telescopewith a diameter of 83 cm, and isequippedwith a uniquesystem of filtersspanningtheentireopticalrange (3500–10 000 Å). Thisfiltersystemis a combination of broad-, medium-, and narrow-band filters, optimallydesigned to extracttherest-framespectralfeatures (the 3700–4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizingstellartypes and delivering a low-resolutionphotospectrumforeach pixel of theobservedsky. With a typicaldepth of AB ∼21.25 mag per band, thisfilter set thusallowsforanunbiased and accuratecharacterization of thestellarpopulation in our Galaxy, itprovidesanunprecedented 2D photospectralinformationforall resolved galaxies in the local Universe, as well as accuratephoto-z estimates (at the δ z/(1 + z)∼0.005–0.03 precisionlevel) formoderatelybright (up to r ∼ 20 mag) extragalacticsources. Whilesomenarrow-band filters are designedforthestudy of particular emissionfeatures ([O II]/λ3727, Hα/λ6563) up to z < 0.017, theyalsoprovidewell-definedwindowsfortheanalysis of otheremissionlines at higherredshifts. As a result, J-PLUS has thepotential to contribute to a widerange of fields in Astrophysics, both in thenearbyUniverse (MilkyWaystructure, globular clusters, 2D IFU-likestudies, stellarpopulations of nearby and moderate-redshiftgalaxies, clusters of galaxies) and at highredshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellarobjects, etc.). Withthispaper, wereleasethefirst∼1000 deg2 of J-PLUS data, containingabout 4.3 millionstars and 3.0 milliongalaxies at r <  21mag. With a goal of 8500 deg2 forthe total J-PLUS footprint, thesenumbers are expected to rise to about 35 millionstars and 24 milliongalaxiesbytheend of thesurvey.Funding for the J-PLUS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel, the Spanish Ministry of Economy and Competitiveness (MINECO; under grants AYA2017-86274-P, AYA2016-77846-P, AYA2016-77237-C3-1-P, AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, AGAUR grant SGR-661/2017, and ICTS-2009-14), and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685
    corecore