28 research outputs found

    A Markov Chain Model for Identifying Changes in Daily Activity Patterns of People Living with Dementia

    Full text link
    Malnutrition and dehydration are strongly associated with increased cognitive and functional decline in people living with dementia (PLWD), as well as an increased rate of hospitalisations in comparison to their healthy counterparts. Extreme changes in eating and drinking behaviours can often lead to malnutrition and dehydration, accelerating the progression of cognitive and functional decline and resulting in a marked reduction in quality of life. Unfortunately, there are currently no established methods by which to objectively detect such changes. Here, we present the findings of an extensive quantitative analysis conducted on in-home monitoring data collected from 73 households of PLWD using Internet of Things technologies. The Coronavirus 2019 (COVID-19) pandemic has previously been shown to have dramatically altered the behavioural habits, particularly the eating and drinking habits, of PLWD. Using the COVID-19 pandemic as a natural experiment, we conducted linear mixed-effects modelling to examine changes in mean kitchen activity within a subset of 21 households of PLWD that were continuously monitored for 499 days. We report an observable increase in day-time kitchen activity and a significant decrease in night-time kitchen activity (t(147) = -2.90, p < 0.001). We further propose a novel analytical approach to detecting changes in behaviours of PLWD using Markov modelling applied to remote monitoring data as a proxy for behaviours that cannot be directly measured. Together, these results pave the way to introduce improvements into the monitoring of PLWD in naturalistic settings and for shifting from reactive to proactive care.Comment: 12 pages, 7 figures, journa

    Associations between dimensions of behaviour, personality traits, and mental-health during the COVID-19 pandemic in the United Kingdom.

    Get PDF
    The COVID-19 pandemic (including lockdown) is likely to have had profound but diverse implications for mental health and well-being, yet little is known about individual experiences of the pandemic (positive and negative) and how this relates to mental health and well-being, as well as other important contextual variables. Here, we analyse data sampled in a large-scale manner from 379,875 people in the United Kingdom (UK) during 2020 to identify population variables associated with mood and mental health during the COVID-19 pandemic, and to investigate self-perceived pandemic impact in relation to those variables. We report that while there are relatively small population-level differences in mood assessment scores pre- to peak-UK lockdown, the size of the differences is larger for people from specific groups, e.g. older adults and people with lower incomes. Multiple dimensions underlie peoples' perceptions, both positive and negative, of the pandemic's impact on daily life. These dimensions explain variance in mental health and can be statistically predicted from age, demographics, home and work circumstances, pre-existing conditions, maladaptive technology use and personality traits (e.g., compulsivity). We conclude that a holistic view, incorporating the broad range of relevant population factors, can better characterise people whose mental health is most at risk during the COVID-19 pandemic

    Predicting clinical diagnosis in Huntington's disease: An imaging polymarker.

    Get PDF
    OBJECTIVE: Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real-life clinical diagnosis in HD. METHOD: A multivariate machine learning approach was applied to resting-state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross-group comparisons between preHD and controls, and within the preHD group in relation to "estimated" and "actual" proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. RESULTS: Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. INTERPRETATION: We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532-543.SLM is funded by a National Institute for Health Research (NIHR) Translational Research Collaboration for Rare Diseases fellowship. This research has been funded/supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. RAB is funded by the NIHR Cambridge Biomedical Research Centre and the Cambridge University NHS Foundation Trust. RED is employed on an EC Marie-Curie CIG, awarded to AH, SJT, EJ and RS receive funding from a Wellcome Collaborative Award (200181/Z/15/Z

    The effects of working memory training on brain activity

    Get PDF
    This study aimed to investigate if two weeks of working memory (WM) training on a progressive N-back task can generate changes in the activity of the underlying WM neural network. Forty-six healthy volunteers (23 training and 23 controls) were asked to perform the N-back task during three fMRI scanning sessions: (1) before training, (2) after the half of training sessions, and (3) at the end. Between the scanning sessions, the experimental group underwent a 10-session training of working memory with the use of an adaptive version of the N-back task, while the control group did not train anything. The N-back task in the scanning sessions was relatively easy (n = 2) in order to ensure high accuracy and a lack of between-group differences at the behavioral level. Such training-induced differences in neural efficiency were expected. Behavioral analyses revealed improved performance of both groups on the N-back task. However, these improvements resulted from the test-retest effect, not the training outside scanner. Performance on the non-trained stop-signal task did not demonstrate any transfer effect. Imaging analysis showed changes in activation in several significant clusters, with overlapping regions of interest in the frontal and parietal lobes. However, patterns of between-session changes of activation did not show any effect of training. The only finding that can be linked with training consists in strengthening the correlation between task performance accuracy and activation of the parietal regions of the neural network subserving working memory (left superior parietal lobule and right supramarginal gyrus posterior). These results suggest that the effects of WM training consist in learning that, in order to ensure high accuracy in the criterion task, activation of the parietal regions implicated in working memory updating must rise

    Towards empathic neurofeedback for interactive storytelling

    Get PDF
    Interactive Narrative is a form of digital entertainment based on AI techniques which support narrative generation and user interaction. Despite recent progress in the field, there is still a lack of unified models integrating narrative generation, user response and interaction. This paper addresses this issue by revisiting existing Interactive Narrative paradigms, granting explicit status to users’ disposition towards story characters. We introduce a novel Brain-Computer Interface (BCI) design, which attempts to capture empathy for the main character in a way that is compatible with filmic theories of emotion. Results from two experimental studies with a fully-implemented system demonstrate the effectiveness of a neurofeedback-based approach, showing that subjects can successfully modulate their emotional support for a character who is confronted with challenging situations. A preliminary fMRI analysis also shows activation during user interaction, in regions of the brain associated with emotional control

    Dissociable effects of age and Parkinson’s disease on instruction-based learning

    Get PDF
    The cognitive deficits associated with Parkinson’s disease vary across individuals and change across time, with implications for prognosis and treatment. Key outstanding challenges are to define the distinct behavioural characteristics of this disorder and develop diagnostic paradigms that can assess these sensitively in individuals. In a previous study, we measured different aspects of attentional control in Parkinson’s disease using an established fMRI switching paradigm. We observed no deficits for the aspects of attention the task was designed to examine; instead those with Parkinson’s disease learnt the operational requirements of the task more slowly. We hypothesized that a subset of people with early-to-mid stage Parkinson’s might be impaired when encoding rules for performing new tasks. Here, we directly test this hypothesis and investigate whether deficits in instruction-based learning represent a characteristic of Parkinson’s Disease. Seventeen participants with Parkinson’s disease (8 male; mean age: 61.2 years), 18 older adults (8 male; mean age: 61.3 years) and 20 younger adults (10 males; mean age: 26.7 years) undertook a simple instruction-based learning paradigm in the MRI scanner. They sorted sequences of coloured shapes according to binary discrimination rules that were updated at two-minute intervals. Unlike common reinforcement learning tasks, the rules were unambiguous, being explicitly presented; consequently, there was no requirement to monitor feedback or estimate contingencies. Despite its simplicity, a third of the Parkinson’s group, but only one older adult, showed marked increases in errors, 4 SD greater than the worst performing young adult. The pattern of errors was consistent, reflecting a tendency to misbind discrimination rules. The misbinding behaviour was coupled with reduced frontal, parietal and anterior caudate activity when rules were being encoded, but not when attention was initially oriented to the instruction slides or when discrimination trials were performed. Concomitantly, Magnetic Resonance Spectroscopy showed reduced gamma-Aminobutyric acid levels within the mid-dorsolateral prefrontal cortices of individuals who made misbinding errors. These results demonstrate, for the first time, that a subset of early-to-mid stage people with Parkinson’s show substantial deficits when binding new task rules in working memory. Given the ubiquity of instruction-based learning, these deficits are likely to impede daily living. They will also confound clinical assessment of other cognitive processes. Future work should determine the value of instruction-based learning as a sensitive early marker of cognitive decline and as a measure of responsiveness to therapy in Parkinson's disease

    Longitudinal functional connectivity changes related to dopaminergic decline in Parkinson's disease.

    Get PDF
    BACKGROUND: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated that basal ganglia functional connectivity is altered in Parkinson's disease (PD) as compared to healthy controls. However, such functional connectivity alterations have not been related to the dopaminergic deficits that occurs in PD over time. OBJECTIVES: To examine whether functional connectivity impairments are correlated with dopaminergic deficits across basal ganglia subdivisions in patients with PD both cross-sectionally and longitudinally. METHODS: We assessed resting-state functional connectivity of basal ganglia subdivisions and dopamine transporter density using 11C-PE2I PET in thirty-four PD patients at baseline. Of these, twenty PD patients were rescanned after 19.9 ± 3.8 months. A seed-based approach was used to analyze resting-state fMRI data. 11C-PE2I binding potential (BPND) was calculated for each participant. PD patients were assessed for disease severity. RESULTS: At baseline, PD patients with greater dopaminergic deficits, as measured with 11C-PE2I PET, showed larger decreases in posterior putamen functional connectivity with the midbrain and pallidum. Reduced functional connectivity of the posterior putamen with the thalamus, midbrain, supplementary motor area and sensorimotor cortex over time were significantly associated with changes in DAT density over the same period. Furthermore, increased motor disability was associated with lower intraregional functional connectivity of the posterior putamen. CONCLUSIONS: Our findings suggest that basal ganglia functional connectivity is related to integrity of dopaminergic system in patients with PD. Application of resting-state fMRI in a large cohort and longitudinal scanning may be a powerful tool for assessing underlying PD pathology and its progression

    Longitudinal functional connectivity changes related to dopaminergic decline in Parkinson’s disease

    Get PDF
    Background: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated that basal ganglia functional connectivity is altered in Parkinson’s disease (PD) as compared to healthy controls. However, such functional connectivity alterations have not been related to the dopaminergic deficits that occurs in PD over time. Objectives: To examine whether functional connectivity impairments are correlated with dopaminergic deficits across basal ganglia subdivisions in patients with PD both cross-sectionally and longitudinally. Methods: We assessed resting-state functional connectivity of basal ganglia subdivisions and dopamine transporter density using 11C-PE2I PET in thirty-four PD patients at baseline. Of these, twenty PD patients were rescanned after 19.9 ± 3.8 months. A seed-based approach was used to analyze resting-state fMRI data. 11CPE2I binding potential (BPND) was calculated for each participant. PD patients were assessed for disease severity. Results: At baseline, PD patients with greater dopaminergic deficits, as measured with 11C-PE2I PET, showed larger decreases in posterior putamen functional connectivity with the midbrain and pallidum. Reduced functional connectivity of the posterior putamen with the thalamus, midbrain, supplementary motor area and sensorimotor cortex over time were significantly associated with changes in DAT density over the same period. Furthermore, increased motor disability was associated with lower intraregional functional connectivity of the posterior putamen. Conclusions: Our findings suggest that basal ganglia functional connectivity is related to integrity of dopaminergic system in patients with PD. Application of resting-state fMRI in a large cohort and longitudinal scanning may be a powerful tool for assessing underlying PD pathology and its progression

    Identifying Alternative Hyper-Splicing Signatures in MG-Thymoma by Exon Arrays

    Get PDF
    BACKGROUND: The vast majority of human genes (>70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. METHODOLOGY/PRINCIPAL FINDINGS: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. CONCLUSIONS/SIGNIFICANCE: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatibility gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF(2) and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MG-thymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches
    corecore