17 research outputs found

    Bio-structuration à l'échelle micro et nanométrique

    Get PDF
    Les substrats structurés aux échelles micrométriques et nanométriques sont intéressants pour des applications biomédicales, par exemple dans des puces à ADN/protéines, pour la miniaturisation des lab-on-chip ou pour préparer des implants permettant le contrôle de l'adhésion de cellules. Dans la dernière décennie des études ont montrées, que les cellules vivantes peuvent détecter la présence de nano-structures sur les substrats sur lesquels elles adhèrent. Bien que ces mécanismes soient étudiés depuis une dizaine d'années, les mécanismes fondamentaux sont encore en cours d'études. Tant pour une étude au niveau fondamental que dans le but d'applications concrètes, il est important de développer des techniques simples pour structurer des substrats sur de grandes surfaces. Nous avons réalisé une nouvelle méthode alliant un faible coût de fabrication et la biocompatibilité pour structurer et biofonctionnaliser des substrats à l'échelle nanométrique en utilisant des membranes d'alumine poreuses comme masque. Les membranes d'alumine poreuses, préparées par électrochimie, sont naturellement organisées en un réseau hexagonal sur une surface de quelques cm . Nous les utilisons comme masque pour la structuration de surfaces. Des trous réguliers sont gravés dans le substrat à travers les membranes d'alumine poreuses. Ce substrat est ensuite utilisée lors d'une application biologique : une bicouche lipidique est déposée sur le substrat structuré pour imiter les hétérogénéités de la membrane cellulaire. La mobilité de la bicouche est étudiée par corrélation de spectroscopie de fluorescence à rayon variable. Une autre série d'expériences est faite en utilisant des membranes d'alumine poreuses comme masque d'évaporation pour créer des réseaux organisés d'îlots d'organo-silanes. Deux molécules sont utilisées elles possèdent soit une fonction amine réactive soit une longue chaîne carbonée inerte. La bio-fonctionnalisation est ensuite effectuée en utilisant la fonction amine pour accrocher un anticorps. Des études sont effectuées en parallèle, sur des substrats bio-fonctionnalisés à l'échelle micrométrique grâce au micro-contact printing. Le but de cette étude est de mettre au point une biochimie de surface permettant le contrôle de l'adhésion de cellules immunitaires, avec le but de transférer ensuite la biochimie à l'échelle nanométrique.Substrates patterned at the micro-scale and nano-scale are interesting for biomedical applications, for example, in DNA/protein nano-arrays, for miniaturized lab-on-chip applications or for making smart implants that can control adhesion of cells. In the last decade, some studies showed that living cells can detect nano-scale structures on substrates to which they adhere. Although this behaviour has been observed now for over a decade, the fundamental detection mechanism is still under investigation. Both for fundamental studies and for applications, it is important to develop facile techniques to pattern substrates on a large scale. We have realized a novel technique for patterning and bio-functionalizing substrates at the nano-scale using porous anodic alumina membranes as masks. The ordered porous anodic alumina membranes, prepared by classical electro-chemistry, are naturally organized in an hexagonal array over surface area of few square centimeters. Here we use them as mask for surface patterning. To create an array of nano holes, the substrate is dry etched through the alumina pores. In a biologically relevant application, a lipid bilayer is deposited on the patterned substrate to mimic a heterogeneous cell membrane. The mobility of the bilayer is studied by fluorescent correlation spectroscopy. In a different set of experiments, the porous alumina membranes are used as evaporation mask to create an organized array of alkyl-silane islands - either with a short carbon chain and with a reactive amine group or with a long carbon chain and non-reactive. Afterwards, biochemical functionalization is achieved by exploiting the amino-function of the amino-silane to bind an antibody. In parallel, we have started some studies of adhesion on a pattern substrate at micro-scale with immunological cells. The substrate is pattern by micro contact printing and the cell adhesion is observed by RICM. The aim of this studies is to prepare the biochemistry for the immunological cells adhesion, with the aim or transferring this to the nano-scale.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Bio-structuration à l'échelle micro et nanométrique

    No full text
    Les substrats structurés aux échelles micrométriques et nanométriques sont intéressants pour des applications biomédicales, par exemple dans des puces à ADN/protéines, pour la miniaturisation des « lab-on-chip » ou pour préparer des implants permettant le contrôle de l'adhésion de cellules. Dans la dernière décennie des études ont montrées, que les cellules vivantes peuvent détecter la présence de nano-structures sur les substrats sur lesquels elles adhèrent. Bien que ces mécanismes soient étudiés depuis une dizaine d'années, les mécanismes fondamentaux sont encore en cours d'études. Tant pour une étude au niveau fondamental que dans le but d'applications concrètes, il est important de développer des techniques simples pour structurer des substrats sur de grandes surfaces. Nous avons réalisé une nouvelle méthode alliant un faible coût de fabrication et la biocompatibilité pour structurer et biofonctionnaliser des substrats à l'échelle nanométrique en utilisant des membranes d'alumine poreuses comme masque. Les membranes d'alumine poreuses, préparées par électrochimie, sont naturellement organisées en un réseau hexagonal sur une surface de quelques cm². Nous les utilisons comme masque pour la structuration de surfaces. Des trous réguliers sont gravés dans le substrat à travers les membranes d'alumine poreuses. Ce substrat est ensuite utilisée lors d'une application biologique : une bicouche lipidique est déposée sur le substrat structuré pour imiter les hétérogénéités de la membrane cellulaire. La mobilité de la bicouche est étudiée par corrélation de spectroscopie de fluorescence à rayon variable. Une autre série d'expériences est faite en utilisant des membranes d'alumine poreuses comme masque d'évaporation pour créer des réseaux organisés d'îlots d'organo-silanes. Deux molécules sont utilisées elles possèdent soit une fonction amine réactive soit une longue chaîne carbonée inerte. La bio-fonctionnalisation est ensuite effectuée en utilisant la fonction amine pour accrocher un anticorps. Des études sont effectuées en parallèle, sur des substrats bio-fonctionnalisés à l'échelle micrométrique grâce au micro-contact printing. Le but de cette étude est de mettre au point une biochimie de surface permettant le contrôle de l'adhésion de cellules immunitaires, avec le but de transférer ensuite la biochimie à l'échelle nanométrique.Substrates patterned at the micro-scale and nano-scale are interesting for biomedical applications, for example, in DNA/protein nano-arrays, for miniaturized lab-on-chip applications or for making smart implants that can control adhesion of cells. In the last decade, some studies showed that living cells can detect nano-scale structures on substrates to which they adhere. Although this behaviour has been observed now for over a decade, the fundamental detection mechanism is still under investigation. Both for fundamental studies and for applications, it is important to develop facile techniques to pattern substrates on a large scale. We have realized a novel technique for patterning and bio-functionalizing substrates at the nano-scale using porous anodic alumina membranes as masks. The ordered porous anodic alumina membranes, prepared by classical electro-chemistry, are naturally organized in an hexagonal array over surface area of few square centimeters. Here we use them as mask for surface patterning. To create an array of nano holes, the substrate is dry etched through the alumina pores. In a biologically relevant application, a lipid bilayer is deposited on the patterned substrate to mimic a heterogeneous cell membrane. The mobility of the bilayer is studied by fluorescent correlation spectroscopy. In a different set of experiments, the porous alumina membranes are used as evaporation mask to create an organized array of alkyl-silane islands - either with a short carbon chain and with a reactive amine group or with a long carbon chain and non-reactive. Afterwards, biochemical functionalization is achieved by exploiting the amino-function of the amino-silane to bind an antibody. In parallel, we have started some studies of adhesion on a pattern substrate at micro-scale with immunological cells. The substrate is pattern by micro contact printing and the cell adhesion is observed by RICM. The aim of this studies is to prepare the biochemistry for the immunological cells adhesion, with the aim or transferring this to the nano-scale

    A micromechanical cell stretching device compatible with super-resolution microscopy and single protein tracking

    No full text
    Cell mechano-sensing is based on biomolecule deformations and reorganizations, yet the molecular mechanisms are still unclear. Super-resolution microscopy (SRM) and single protein tracking (SPT) techniques reveal the dynamic organization of proteins at the nanoscale. In parallel, stretchable substrates are used to investigate cellular responses to mechanical forces. However, simultaneous combination of SRM/SPT and cell stretching has never been achieved. Here, we present a cell stretching device compatible with SRM and SPT, composed of an ultra-thin Polydimethylsiloxane (PDMS) layer. The PDMS sheet is gliding on a glycerol-lubricated glass cover-slip to ensure flatness during uniaxial stretching, generated with a 3D-printed micromechanical device by a mobile arm connected to a piezoelectric translator. This method enables to obtain super-resolved images of protein reorganization after live stretching, and to monitor single protein deformation and recruitment inside mechanosensitive structures upon stretching. This protocol is related to the publication ‘Cell stretching is amplified by active actin remodeling to deform and recruit proteins in mechanosensitive structures’, in Nature Cell Biology

    A micromechanical cell stretching device compatible with super-resolution microscopy and single protein tracking

    No full text
    Cell mechano-sensing is based on biomolecule deformations and reorganizations, yet the molecular mechanisms are still unclear. Super-resolution microscopy (SRM) and single protein tracking (SPT) techniques reveal the dynamic organization of proteins at the nanoscale. In parallel, stretchable substrates are used to investigate cellular responses to mechanical forces. However, simultaneous combination of SRM/SPT and cell stretching has never been achieved. Here, we present a cell stretching device compatible with SRM and SPT, composed of an ultra-thin Polydimethylsiloxane (PDMS) layer. The PDMS sheet is gliding on a glycerol-lubricated glass cover-slip to ensure flatness during uniaxial stretching, generated with a 3D-printed micromechanical device by a mobile arm connected to a piezoelectric translator. This method enables to obtain super-resolved images of protein reorganization after live stretching, and to monitor single protein deformation and recruitment inside mechanosensitive structures upon stretching. This protocol is related to the publication ‘Cell stretching is amplified by active actin remodeling to deform and recruit proteins in mechanosensitive structures’, in Nature Cell Biology

    Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

    No full text
    International audienceBrain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes

    Cell stretching is amplified by active actin remodelling to deform and recruit proteins in mechanosensitive structures

    No full text
    International audienceDetection and conversion of mechanical forces into biochemical signals control cell functions during physiological and pathological processes. Mechano-sensing is based on protein deformations and reorganizations, yet the molecular mechanisms in cells are still unclear. Using a cell stretching device compatible with super-resolution microscopy (SRM) and single protein tracking (SPT), we explored the nanoscale deformations and reorganizations of individual proteins inside mechano-sensitive structures. We achieved SRM after live stretching on intermediate filaments, microtubules and integrin adhesions. Simultaneous SPT and stretching showed that while integrins follow the elastic deformation of the substrate, actin filaments and talin also displayed lagged and transient inelastic responses associated with active acto-myosin remodeling and talin deformations. Capturing acute reorganizations of single-molecule during stretching showed that force-dependent vinculin recruitment is delayed and depends on the maturation state of integrin adhesions. Thus, cells respond to external forces by amplifying transiently and locally cytoskeleton displacements enabling protein deformation and recruitment in mechano-sensitive structures
    corecore