14 research outputs found

    Fate of diluted bitumen spilled in the coastal waters of British Columbia, Canada.

    Get PDF
    Abstract There is public concern about the behaviour of spilled diluted bitumen (dilbit) in marine and estuarine waters. We provide a preliminary assessment of the results of laboratory experiments and models, in the context of environmental conditions in the coastal waters of British Columbia. Most dilbit spilled within this region would likely float at the surface and be transported to shore by winds and currents. Fresh dilbit is too light to sink in coastal waters. Highly weathered dilbit could sink where salinity is less than 14, typically only near river mouths and in the top 1–3 m of fjords after heavy rainfall. Subsurface plumes of weathered dilbit could re-emerge at the surface. Sinking oil-particle aggregates are unlikely to form in coastal waters. However, dilbit could be entrained below the surface by wave mixing during storms and to depths of 150 m by coherent mixing in the Haro Strait tidal convergence zone

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    How can blue carbon burial in seagrass meadows increase long-term, net sequestration of carbon? A critical review

    No full text
    Blue carbon sequestration in seagrass meadows has been proposed as a low-risk, nature-based solution to offset carbon emissions and reduce the effects of climate change. Although the timescale of seagrass carbon burial is too short to offset emissions of ancient fossil fuel carbon, it has a role to play in reaching net zero within the modern carbon cycle. This review documents and discusses recent advances (from 2015 onwards) in the field of seagrass blue carbon. The net burial of carbon is affected by seagrass species, meadow connectivity, sediment bioturbation, grainsize, the energy of the local environment, and calcium carbonate formation. The burial rate of organic carbon can be calculated as the product of the sediment accumulation rate below the mixed layer and the burial concentration of organic carbon attributable to seagrass. A combination of biomarkers can identify seagrass material more precisely than bulk isotopes alone. The main threats related to climate change are sea-level rise, leading to a shoreline squeeze, and temperature rise, particularly during extreme events such as heat domes. In conclusion, some of the disagreement in the literature over methodology and the main controls on organic carbon burial likely results from real, regional differences in seagrasses and their habitat. Inter-regional collaboration could help to resolve the methodological differences and provide a more robust understanding of the global role of blue carbon sequestration in seagrass meadows

    Geoengineering with seagrasses: is credit due where credit is given?

    No full text
    Blue carbon, the carbon fixed by vegetated coastal ecosystems including seagrasses, is reported to have a large potential to sequester atmospheric carbon dioxide. Planting, expanding or protecting seagrass meadows has, accordingly, been proposed as a form of geoengineering. Seagrasses are reported to account for up to 18% of the carbon burial in the world’s oceans, which is on the same order of magnitude as other proposed geoengineering techniques, including iron fertilization. International protocols have been developed to quantify carbon sequestration in seagrass meadows, with a view to awarding carbon credits under the Verified Carbon Standard. Unfortunately, because these protocols do not adequately account for post-depositional processes in marine sediment, they significantly overestimate carbon capture by seagrass beds and give an incorrect view of its distribution. Specifically, neglecting biomixing and remineralization of carbon in surface sediments biases burial rates high, while using sediment carbon inventory (soil carbon stock) over the top 1 m as a proxy for burial rate incorrectly identifies areas of high carbon burial. Seagrass beds likely provide a limited setting for geoengineering, because they generally comprise slowly-accumulating, fine to medium sand, which captures organic carbon less efficiently than fine-grained sediments or rapidly-accumulating delta deposits. While there is no question that seagrass meadows provide valuable habitat, nor that they are disappearing rapidly, their contribution to the global burial of carbon has not yet been established. The danger of geoengineering with seagrasses before reliable assessment methods have been established is that overestimated carbon offsets could lead to a net increase in emissions of carbon dioxide to the atmosphere

    Has primary production declined in the Salish Sea?

    No full text
    Declining primary production has been proposed as an explanation for the declines in coho and chinook salmon in the Salish Sea since the 1970s. Marine sediments maintain a continuous record of conditions in the overlying water. We used stable isotopes of organic carbon and nitrogen measured in twenty-one sediment cores to determine the contributions and fluxes of marine-derived and terrigenous organic matter over time. The flux of marine-derived organic matter shows no trend for at least the last 100 years. An apparent increase in the marine flux in recent years is due to remineralization of organic matter as it passes through surface sediments. In contrast, the flux of terrigenous organic matter has increased over the last century in the Strait of Georgia, while in Puget Sound, terrigenous flux peaked in the mid-twentieth century. Total primary production has neither increased nor decreased in the Salish Sea over the last century. Consequently, a decline in primary production cannot explain recent declines in fish populations.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Proceedings of the 4th World Conference on Research Integrity

    Get PDF
    CITATION: O’Brien, S. P., et al. 2016. Proceedings of the 4th World Conference on Research Integrity. Research Integrity and Peer Review, 1:9, doi:10.1186/s41073-016-0012-9.The original publication is available at https://researchintegrityjournal.biomedcentral.comThese Proceedings contain the abstracts of the presentations given at the 4th World Conference in concurrent sessions, partner symposia, and poster sessions. Also included are summaries of the discussions in three focus tracks, which allowed delegates to consider and work on questions about the roles of funders, institutions, and countries in improving research systems and strengthening research integrity. Videos of the plenary presentations are available at the conference website (www.wcri2015.org).https://researchintegrityjournal.biomedcentral.com/articles/10.1186/s41073-016-0012-

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    No full text
    International audienceAbstract Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29–39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
    corecore