18 research outputs found

    Unweaving the population structure and genetic diversity of Canadian shrub willow

    Get PDF
    Perennial shrub willow are increasingly being promoted in short-rotation coppice systems as biomass feedstocks, for phytoremediation applications, and for the diverse ecosystem services that can accrue. This renewed interest has led to widespread willow cultivation, particularly of non-native varieties. However, Canadian willow species have not been widely adopted and their inherent diversity has not yet been thoroughly investigated. In this study, 324 genotypes of Salix famelica and Salix eriocephala collected from 33 sites of origin were analyzed using 26,016 single nucleotide polymorphisms to reveal patterns of population structure and genetic diversity. Analyses by Bayesian methods and principal component analysis detected five main clusters that appeared to be largely shaped by geoclimatic variables including mean annual precipitation and the number of frost-free days. The overall observed (HO) and expected (HE) heterozygosity were 0.126 and 0.179, respectively. An analysis of molecular variance revealed that the highest genetic variation occurred within genotypes (69%), while 8% of the variation existed among clusters and 23% between genotypes within clusters. These findings provide new insights into the extent of genetic variation that exists within native shrub willow species which could be leveraged in pan-Canadian willow breeding programs.Fil: Murphy, Emily K. University of British Columbia. Faculty of Forestry. Department of Wood Science; CanadáFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soolanayakanahally, Raju Y. Agriculture and Agri-Food Canada. Indian Head Research Farm; Canadá. Agriculture and Agri-Food Canada. Saskatoon Research and Development Centre; Canadá.Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: Parkin, Isobel A.P. Agriculture and Agri-Food Canada. Saskatoon Research and Development Centre; Canadá.Fil: Schroeder, William R. Agriculture and Agri-Food Canada. Indian Head Research Farm; CanadáFil: Mansfield, Shawn D. University of British Columbia. Faculty of Forestry. Department of Wood Science; Canad

    Data from: The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate

    No full text
    The manner in which organisms adapt to climate change informs both a broader understanding of the evolution of biodiversity as well as plans for future conservation and mitigation. We apply common garden and association mapping approaches to quantify genetic variance and identify loci affecting bud flush and bud set, traits that define a tree’s season for height growth, in the boreal forest tree Populus balsamifera L. (balsam poplar). Using data from 478 genotypes grown in each of two common gardens, one near the southern edge and another near the northern edge of P. balsamifera’s range, we found that broad-sense heritability for bud flush and bud set was generally high (H2 > 0.5 in most cases), suggesting that abundant genetic variation exists for phenological response to changes in the length of the growing season. To identify the molecular genetic basis of this variation, we genotyped trees for 346 candidate single nucleotide polymorphisms (SNPs) from 27 candidate genes for the CO/FT pathway in poplar. Mixed model analyses of variance identified SNPs in 10 genes to be associated with variation either bud flush or bud set. Multiple SNPs within FRIGIDA were associated with bud flush, whereas multiple SNPs in LEAFY and GIGANTEA 5 were associated with bud set. Although there was strong population structure in trait variance, except at the most northern populations the geographic distribution of multilocus SNP genotypes was widespread, indicating that geographic regions may harbor sufficient diversity in functional genes to facilitate adaption to future climatic conditions in many populations

    LAMINA: a tool for rapid quantification of leaf size and shape parameters

    No full text
    Background: An increased understanding of leaf area development is important in a number of fields: in food and non-food crops, for example short rotation forestry as a biofuels feedstock, leaf area is intricately linked to biomass productivity; in paleontology leaf shape characteristics are used to reconstruct paleoclimate history. Such fields require measurement of large collections of leaves, with resulting conclusions being highly influenced by the accuracy of the phenotypic measurement process. Results: We have developed LAMINA (Leaf shApe deterMINAtion), a new tool for the automated analysis of images of leaves. LAMINA has been designed to provide classical indicators of leaf shape (blade dimensions) and size (area), which are typically required for correlation analysis to biomass productivity, as well as measures that indicate asymmetry in leaf shape, leaf serration traits, and measures of herbivory damage (missing leaf area). In order to allow Principal Component Analysis (PCA) to be performed, the location of a chosen number of equally spaced boundary coordinates can optionally be returned. Conclusion: We demonstrate the use of the software on a set of 500 scanned images, each containing multiple leaves, collected from a common garden experiment containing 116 clones of Populus tremula (European trembling aspen) that are being used for association mapping, as well as examples of leaves from other species. We show that the software provides an efficient and accurate means of analysing leaf area in large datasets in an automated or semi-automated work flow.Forest Sciences, Department ofForestry, Faculty ofNon UBCReviewedFacult

    A meta-analysis of mesophyll conductance to CO2in relation to major abiotic stresses in poplar species

    No full text
    Mesophyll conductance (gm) determines the diffusion of CO2 from the substomatal cavities to the site of carboxylation in the chloroplasts and represents a critical component of the diffusive limitation of photosynthesis. In this study, we evaluated the average effect sizes of different environmental constraints on gm in Populus spp., a forest tree model. We collected raw data of 815 A-Ci response curves from 26 datasets to estimate gm, using a single curve-fitting method to alleviate method-related bias. We performed a meta-analysis to assess the effects of different abiotic stresses on gm. We found a significant increase in gm from the bottom to the top of the canopy that was concomitant with the increase of maximum rate of carboxylation and light-saturated photosynthetic rate (Amax). gm was positively associated with increases in soil moisture and nutrient availability, but was insensitive to increasing soil copper concentration and did not vary with atmospheric CO2 concentration. Our results showed that gm was strongly related to Amax and to a lesser extent to stomatal conductance (gs). Moreover, a negative exponential relationship was obtained between gm and specific leaf area, which may be used to scale-up gm within the canopy

    LAMINA: a tool for rapid quantification of leaf size and shape parameters-0

    No full text
    Comparison of leaf area data generated using ImageJ and LAMINA.<p><b>Copyright information:</b></p><p>Taken from "LAMINA: a tool for rapid quantification of leaf size and shape parameters"</p><p>http://www.biomedcentral.com/1471-2229/8/82</p><p>BMC Plant Biology 2008;8():82-82.</p><p>Published online 22 Jul 2008</p><p>PMCID:PMC2500018.</p><p></p

    LAMINA: a tool for rapid quantification of leaf size and shape parameters-1

    No full text
    however the perimeter is correctly identified. Example image from []. Serration detection pixel threshold = 50. Example image from []. Example leaves from UmeĂĄ Plant Science Centre 2006 Calendar. Example Image containing a range of leaves from common European tree species with contrasting leaf shapes. Example use of serration detection to measure lobes in a senescing maple leaf. Serration detection pixel threshold = 75. An example set of leaves representing a developmental series. All images were analysed using the threshold setting.<p><b>Copyright information:</b></p><p>Taken from "LAMINA: a tool for rapid quantification of leaf size and shape parameters"</p><p>http://www.biomedcentral.com/1471-2229/8/82</p><p>BMC Plant Biology 2008;8():82-82.</p><p>Published online 22 Jul 2008</p><p>PMCID:PMC2500018.</p><p></p
    corecore