373 research outputs found

    Cytosolic phosphorylated EGFR is predictive of recurrence in early stage penile cancer patients: A retropective study

    Get PDF
    Background: Penile cancer (PC) is a rare tumor, and therapeutic options are limited for this disease, with an overall 5-year overall survival around 65-70%. Adjuvant therapy is not recommended for patients with N0-1 disease, despite up to 60% of these patients will die within 5 years from diagnosis. Methods: Medical records of all patients who underwent radical surgery at University Federico II of Naples and at National Tumor Institute "Pascale" of Naples for early squamous cell carcinoma of the penis from January, 2000 to December, 2011 were retrieved. Paraffin wax embedded tissue specimens were retrieved from the pathology archives of the participating Institutions for all patients. Expression of p-EGFR, EGFR and positivity to HPV were evaluated along with other histological variables of interest. Demographic data of eligible patients were retrieved along with clinical characteristics such as type of surgical operation, time of follow up, time of recurrence, overall survival. A multivariable model was constructed using a forward stepwise selection procedure. Results: Thirty eligible patients were identified. All patients were positive for EGFR by immunohistochemistry, while 13 and 16 were respectively positive for nuclear and cytosolic p-EGFR. No EGFR amplification was detected by FISH. Eight patients were positive for high-risk HPV by ISH. On univariable analysis, corpora cavernosa infiltration (OR 7.8; 95% CI = 0,8 to 75,6; P = 0,039) and positivity for cytosolic p-EGFR (OR 7.6; 95% CI = 1.49 to 50; P = 0.009) were predictive for recurrence, while only positivity for cytosolic p-EGFR (HR = 9.0; 95% CI 1.0-100; P = 0,0116) was prognostic for poor survival. Conclusion: It is of primary importance to identify patients with N0-1 disease who are at increased risk of recurrence, as they do not normally receive any adjuvant therapy. Expression of p-EGFR was found in this series to be strongly related to increase risk of recurrence and shorter overall survival. This finding is consistent with the role of p-EGFR in other solid malignancies. Integration of p-EGFR with classic prognostic factors and other histology markers should be pursued to establish optimal adjuvant therapy for N0-1 PC patients

    Mocetinostat for patients with previously treated, locally advanced/metastatic urothelial carcinoma and inactivating alterations of acetyltransferase genes

    Full text link
    BackgroundThe authors evaluated mocetinostat (a class I/IV histone deacetylase inhibitor) in patients with urothelial carcinoma harboring inactivating mutations or deletions in CREB binding protein [CREBBP] and/or E1A binding protein p300 [EP300] histone acetyltransferase genes in a singleâ arm, openâ label phase 2 study.MethodsEligible patients with platinumâ treated, advanced/metastatic disease received oral mocetinostat (at a dose of 70 mg 3 times per week [TIW] escalating to 90 mg TIW) in 28â day cycles in a 3â stage study (ClinicalTrials.gov identifier NCT02236195). The primary endpoint was the objective response rate.ResultsGenomic testing was feasible in 155 of 175 patients (89%). Qualifying tumor mutations were CREBBP (15%), EP300 (8%), and both CREBBP and EP300 (1%). A total of 17 patients were enrolled into stage 1 (the intentâ toâ treat population); no patients were enrolled in subsequent stages. One partial response was observed (11% [1 of 9 patients; the population that was evaluable for efficacy comprised 9 of the 15 planned patients]); activity was deemed insufficient to progress to stage 2 (null hypothesis: objective response rate of â ¤15%). All patients experienced â ¥1 adverse event, most commonly nausea (13 of 17 patients; 77%) and fatigue (12 of 17 patients; 71%). The median duration of treatment was 46 days; treatment interruptions (14 of 17 patients; 82%) and dose reductions (5 of 17 patients; 29%) were common. Mocetinostat exposure was lower than anticipated (doseâ normalized maximum serum concentration [Cmax] after TIW dosing of 0.2 ng/mL/mg).ConclusionsTo the authorsâ knowledge, the current study represents the first clinical trial using genomicâ based selection to identify patients with urothelial cancer who are likely to benefit from selective histone deacetylase inhibition. Mocetinostat was associated with significant toxicities that impacted drug exposure and may have contributed to modest clinical activity in these pretreated patients. The efficacy observed was considered insufficient to warrant further investigation of mocetinostat as a single agent in this setting.After the genomicâ based selection of patients with urothelial cancer with inactivating mutations/deletions in the histone acetyltransferase genes CREBBP and/or EP300, singleâ agent mocetinostat appears to be associated with significant toxicities that limit drug exposure. This may have contributed to the limited activity noted in the current phase 2 study (response rate of 11%) among heavily pretreated patients with platinumâ refractory disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147860/1/cncr31817_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147860/2/cncr31817.pd

    Method for evaluating prediction models that apply the results of randomized trials to individual patients

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The clinical significance of a treatment effect demonstrated in a randomized trial is typically assessed by reference to differences in event rates at the group level. An alternative is to make individualized predictions for each patient based on a prediction model. This approach is growing in popularity, particularly for cancer. Despite its intuitive advantages, it remains plausible that some prediction models may do more harm than good. Here we present a novel method for determining whether predictions from a model should be used to apply the results of a randomized trial to individual patients, as opposed to using group level results.</p> <p>Methods</p> <p>We propose applying the prediction model to a data set from a randomized trial and examining the results of patients for whom the treatment arm recommended by a prediction model is congruent with allocation. These results are compared with the strategy of treating all patients through use of a net benefit function that incorporates both the number of patients treated and the outcome. We examined models developed using data sets regarding adjuvant chemotherapy for colorectal cancer and Dutasteride for benign prostatic hypertrophy.</p> <p>Results</p> <p>For adjuvant chemotherapy, we found that patients who would opt for chemotherapy even for small risk reductions, and, conversely, those who would require a very large risk reduction, would on average be harmed by using a prediction model; those with intermediate preferences would on average benefit by allowing such information to help their decision making. Use of prediction could, at worst, lead to the equivalent of an additional death or recurrence per 143 patients; at best it could lead to the equivalent of a reduction in the number of treatments of 25% without an increase in event rates. In the Dutasteride case, where the average benefit of treatment is more modest, there is a small benefit of prediction modelling, equivalent to a reduction of one event for every 100 patients given an individualized prediction.</p> <p>Conclusion</p> <p>The size of the benefit associated with appropriate clinical implementation of a good prediction model is sufficient to warrant development of further models. However, care is advised in the implementation of prediction modelling, especially for patients who would opt for treatment even if it was of relatively little benefit.</p

    Targeting HOX transcription factors in prostate cancer

    Get PDF
    YesBackground: The HOX genes are a family of transcription factors that help to determine cell and tissue identity during early development, and which are also over-expressed in a number of malignancies where they have been shown to promote cell proliferation and survival. The purpose of this study was to evaluate the expression of HOX genes in prostate cancer and to establish whether prostate cancer cells are sensitive to killing by HXR9, an inhibitor of HOX function. Methods: HOX function was inhibited using the HXR9 peptide. HOX gene expression was assessed by RNA extraction from cells or tissues followed by quantitative PCR, and siRNA was used to block the expression of the HOX target gene, cFos. In vivo modelling involved a mouse flank tumour induced by inoculation with LNCaP cells. Results: In this study we show that the expression of HOX genes in prostate tumours is greatly increased with respect to normal prostate tissue. Targeting the interaction between HOX proteins and their PBX cofactor induces apoptosis in the prostate cancer derived cell lines PC3, DU145 and LNCaP, through a mechanism that involves a rapid increase in the expression of cFos, an oncogenic transcription factor. Furthermore, disrupting HOX/PBX binding using the HXR9 antagonist blocks the growth of LNCaP tumours in a xenograft model over an extended period. Conclusion: Many HOX genes are highly over-expressed in prostate cancer, and prostate cancer cells are sensitive to killing by HXR9 both in vitro and in vivo. The HOX genes are therefore a potential therapeutic target in prostate cancer.The authors gratefully acknowledge the support of the Prostate Project charity (UK)

    SPIRE - combining SGI-110 with cisplatin and gemcitabine chemotherapy for solid malignancies including bladder cancer: study protocol for a phase Ib/randomised IIa open label clinical trial

    Get PDF
    Background Urothelial bladder cancer (UBC) accounts for 10,000 new diagnoses and 5000 deaths annually in the UK (Cancer Research UK, http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer, Cancer Research UK, Accessed 26 Mar 2018). Cisplatin-based chemotherapy is standard of care therapy for UBC for both palliative first-line treatment of advanced/metastatic disease and radical neoadjuvant treatment of localised muscle invasive bladder cancer. However, cisplatin resistance remains a critical cause of treatment failure and a barrier to therapeutic advance in UBC. Based on supportive pre-clinical data, we hypothesised that DNA methyltransferase inhibition would circumvent cisplatin resistance in UBC and potentially other cancers. Methods The addition of SGI-110 (guadecitabine, a DNA methyltransferase inhibitor) to conventional doublet therapy of gemcitabine and cisplatin (GC) is being tested within the phase Ib/IIa SPIRE clinical trial. SPIRE incorporates an initial, modified rolling six-dose escalation phase Ib design of up to 36 patients with advanced solid tumours followed by a 20-patient open-label randomised controlled dose expansion phase IIa component as neoadjuvant treatment for UBC. Patients are being recruited from UK secondary care sites. The dose escalation phase will determine a recommended phase II dose (RP2D, primary endpoint) of SGI-110, by subcutaneous injection, on days 1–5 for combination with GC at conventional doses (cisplatin 70 mg/m2, IV infusion, day 8; gemcitabine 1000 mg/m2, IV infusion, days 8 and 15) in every 21-day cycle. In the dose expansion phase, patients will be randomised 1:1 to GC with or without SGI-110 at the proposed RP2D. Secondary endpoints will include toxicity profiles, SGI-110 pharmacokinetics and pharmacodynamic biomarkers, and pathological complete response rates in the dose expansion phase. Analyses will not be powered for formal statistical comparisons and descriptive statistics will be used to describe rates of toxicity, efficacy and translational endpoints by treatment arm. Discussion SPIRE will provide evidence for whether SGI-110 in combination with GC chemotherapy is safe and biologically effective prior to future phase II/III trials as a neoadjuvant therapy for UBC and potentially in other cancers treated with GC
    • …
    corecore