337 research outputs found

    Engineering of Metabolic Pathways by Artificial Enzyme Channels.

    Get PDF
    Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation, and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article, we will first discuss the supramolecular organization of enzymes in living systems and second summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products

    Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield

    Get PDF
    Open Access Article; Published online: 17 Jan 2020Cassava is an important staple crop in sub‐Saharan Africa, due to its high productivity even on nutrient poor soils. The metabolic characteristics underlying this high productivity are poorly understood including the mode of photosynthesis, reasons for the high rate of photosynthesis, the extent of source/sink limitation, the impact of environment, and the extent of variation between cultivars. Six commercial African cassava cultivars were grown in a greenhouse in Erlangen, Germany, and in the field in Ibadan, Nigeria. Source leaves, sink leaves, stems and storage roots were harvested during storage root bulking and analyzed for sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, protein, activities of enzymes in central metabolism and yield traits. High ratios of RuBisCO:phosphoenolpyruvate carboxylase activity support a C3 mode of photosynthesis. The high rate of photosynthesis is likely to be attributed to high activities of enzymes in the Calvin–Benson cycle and pathways for sucrose and starch synthesis. Nevertheless, source limitation is indicated because root yield traits correlated with metabolic traits in leaves rather than in the stem or storage roots. This situation was especially so in greenhouse‐grown plants, where irradiance will have been low. In the field, plants produced more storage roots. This was associated with higher AGPase activity and lower sucrose in the roots, indicating that feedforward loops enhanced sink capacity in the high light and low nitrogen environment in the field. Overall, these results indicated that carbon assimilation rate, the K battery, root starch synthesis, trehalose, and chlorogenic acid accumulation are potential target traits for genetic improvement

    Unsupervised classification identifies coherent thermohaline structures in the Weddell Gyre region

    Get PDF
    The Weddell Gyre is a major feature of the Southern Ocean and an important component of the planetary climate system; it regulates air–sea exchanges, controls the formation of deep and bottom waters, and hosts upwelling of relatively warm subsurface waters. It is characterised by low sea surface temperatures, ubiquitous sea ice formation, and widespread salt stratification that stabilises the water column. Observing the Weddell Gyre is challenging, as it is extremely remote and largely covered with sea ice. At present, it is one of the most poorly sampled regions of the global ocean, highlighting the need to extract as much value as possible from existing observations. Here, we apply a profile classification model (PCM), which is an unsupervised classification technique, to a Weddell Gyre profile dataset to identify coherent regimes in temperature and salinity. We find that, despite not being given any positional information, the PCM identifies four spatially coherent thermohaline domains that can be described as follows: (1) a circumpolar class, (2) a transition region between the circumpolar waters and the Weddell Gyre, (3) a gyre edge class with northern and southern branches, and (4) a gyre core class. PCM highlights, in an objective and interpretable way, both expected and underappreciated structures in the Weddell Gyre dataset. For instance, PCM identifies the inflow of Circumpolar Deep Water (CDW) across the eastern boundary, the presence of the Weddell–Scotia Confluence waters, and structured spatial variability in mixing between Winter Water and CDW. PCM offers a useful complement to existing expertise-driven approaches for characterising the physical configuration and variability of oceanographic regions, helping to identify coherent thermohaline structures and the boundaries between them.</p

    The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism

    No full text
    The aim of this work was to investigate the importance of cytosolic phosphorylating glyceralclehyde 3-phosphate dehydrogenase (GAPC) in potato carbohydrate metabolism. For this purpose, the cytosolic isoform of phosphorylating GAPC was cloned and used for an antisense approach to generate transgenic potato plants that exhibited constitutively decreased GAPDH activity. Potato lines with decreased activities of phosphorylating GAPC exhibited no major changes in either whole-plant or tuber morphology. However, the levels of 3-phosphoglycerate were decreased in leaves of the transformants. A broad metabolic phenotyping of tubers from the transformants revealed an increase in sucrose and UDPgiucose content, a decrease in the glycolytic intermediates 3-phosphoglycerate and phosphoenolpyruvate but little change in the levels of other metabolites. Moreover, the transformants displayed no differences in cold sweetening with respect to the wild type. Taken together these data suggest that phosphorylating GAPC plays only a minor role in the regulation of potato metabolism. The results presented here are discussed in relation to current models regarding primary metabolism in the potato tuber parenchyma

    Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth

    Get PDF
    Plant roots are colonized by microorganisms from the surrounding soil that belong to different kingdoms and form a multikingdom microbial community called the root microbiota. Despite their importance for plant growth, the relationship between soil management, the root microbiota, and plant performance remains unknown. Here, we characterize the maize root-associated bacterial, fungal, and oomycetal communities during the vegetative and reproductive growth stages of four maize inbred lines and the pht1;6 phosphate transporter mutant. These plants were grown in two long-term experimental fields under four contrasting soil managements, including phosphate-deficient and -sufficient conditions. We showed that the maize root-associated microbiota is influenced by soil management and changes during host growth stages. We identified stable bacterial and fungal root-associated taxa that persist throughout the host life cycle. These taxa were accompanied by dynamic members that covary with changes in root metabolites. We observed an inverse stable-to-dynamic ratio between root-associated bacterial and fungal communities. We also found a host footprint on the soil biota, characterized by a convergence between soil, rhizosphere, and root bacterial communities during reproductive maize growth. Our study reveals the spatiotemporal dynamics of the maize root-associated microbiota and suggests that the fungal assemblage is less responsive to changes in root metabolites than the bacterial community

    Auxin signaling and vascular cambium formation enables storage metabolism in cassava tuberous roots

    Get PDF
    Open Access Article; Published online: 13 Mar 2021Cassava storage roots are among the most important root crops worldwide and represent one of the most consumed staple foods in Sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report on distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts was observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, increased most notably during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of nonlignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function

    Exclusive neuronal expression of SUCLA2 in the human brain

    Get PDF
    SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex

    Xyloglucan endotransglucosylase and cell wall extensibility

    Full text link
    Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl growth were also highest compared with the wild line
    corecore