81 research outputs found

    Soil and geologic formations as antidotes for CO2 sequestration?

    Get PDF
    Rapid and far‐reaching transitions are required to combat climate change and its impacts. Carbon capture and storage within mineral deposits is a promising solution to remove CO2 from the atmosphere. In‐situ geological storage and ex‐situ mineral sequestration are practically sufficient for sequestering all the anthropogenic CO2. Recent research reports that more than 95% of injected CO2 was mineralized into carbonates in two years by using in‐situ geological approach, and mining wastes and secondary minerals were recycled as resources for ex‐situ CO2 sequestration. However, geological activity is the major risk of in‐situ storage, while high energy consumption and associated cost may limit the application of ex‐situ carbonation. Significant technical breakthroughs of mineral and geological CO2 sequestration are therefore of vital importance to realize a “net‐zero CO2 emissions” and even “carbon‐negative” society

    Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels?

    Get PDF
    BACKGROUND: In the Arctic, polar bears (Ursus maritimus) bio-accumulate mercury as they prey on polluted ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus). Studies have shown that polar bears from East Greenland are among the most mercury polluted species in the Arctic. It is unknown whether these levels are toxic to liver and kidney tissue. METHODS: We investigated the histopathological impact from anthropogenic long-range transported mercury on East Greenland polar bear liver (n = 59) and kidney (n = 57) tissues. RESULTS: Liver mercury levels ranged from 1.1–35.6 μg/g wet weight and renal levels ranged from 1–50 μg/g wet weight, of which 2 liver values and 9 kidney values were above known toxic threshold level of 30 μg/g wet weight in terrestrial mammals. Evaluated from age-correcting ANCOVA analyses, liver mercury levels were significantly higher in individuals with visible Ito cells (p < 0.02) and a similar trend was found for lipid granulomas (p = 0.07). Liver mercury levels were significantly lower in individuals with portal bile duct proliferation/fibrosis (p = 0.007) and a similar trend was found for proximal convoluted tubular hyalinisation in renal tissue (p = 0.07). CONCLUSION: Based on these relationships and the nature of the chronic inflammation we conclude that the lesions were likely a result of recurrent infections and ageing but that long-term exposure to mercury could not be excluded as a co-factor. The information is important as it is likely that tropospheric mercury depletion events will continue to increase the concentrations of this toxic heavy metal in the Sub Arctic and Arctic marine food webs

    Do Organohalogen Contaminants Contribute to Histopathology in Liver from East Greenland Polar Bears (Ursus maritimus)?

    Get PDF
    In East Greenland polar bears (Ursus maritimus), anthropogenic organohalogen compounds (OHCs) (e.g., polychlorinated biphenyls, dichlorodiphenyltrichloroethane, and polybrominated diphenyl ethers) contributed to renal lesions and are believed to reduce bone mineral density. Because OHCs are also hepatotoxic, we investigated liver histology of 32 subadult, 24 adult female, and 23 adult male East Greenland polar bears sampled during 1999–2002. Light microscopic changes consisted of nuclear displacement from the normal central cytoplasmic location in parenchymal cells, mononuclear cell infiltrations (mainly portally and as lipid granulomas), mild bile duct proliferation accompanied by fibrosis, and fat accumulation in hepatocytes and pluripotent Ito cells. Lipid accumulation in Ito cells and bile duct hyperplasia accompanied by portal fibrosis were correlated to age, whereas no changes were associated with either sex or season (summer vs. winter). For adult females, hepatocytic intracellular fat increased significantly with concentrations of the sum of hexachlorocyclohexanes, as was the case for lipid granulomas and hexachlorobenzene in adult males. Based on these relationships and the nature of the chronic inflammation, we suggest that these findings were caused by aging and long-term exposure to OHCs. Therefore, these changes may be used as biomarkers for OHC exposure in wildlife and humans. To our knowledge, this is the first time liver histology has been evaluated in relation to OHC concentrations in a mammalian wildlife species, and the information is important to future polar bear conservation strategies and health assessments of humans relying on OHC-contaminated food resources

    High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas.

    Get PDF
    Ecological communities that experience stable climate conditions have been speculated to preserve more specialized interspecific associations and have higher proportions of smaller ranged species (SRS). Thus, areas with disproportionally large numbers of SRS are expected to coincide geographically with a high degree of community-level ecological specialization, but this suggestion remains poorly supported with empirical evidence. Here, we analysed data for hummingbird resource specialization, range size, contemporary climate, and Late Quaternary climate stability for 46 hummingbird-plant mutualistic networks distributed across the Americas, representing 130 hummingbird species (ca 40% of all hummingbird species). We demonstrate a positive relationship between the proportion of SRS of hummingbirds and community-level specialization, i.e. the division of the floral niche among coexisting hummingbird species. This relationship remained strong even when accounting for climate, furthermore, the effect of SRS on specialization was far stronger than the effect of specialization on SRS, suggesting that climate largely influences specialization through species' range-size dynamics. Irrespective of the exact mechanism involved, our results indicate that communities consisting of higher proportions of SRS may be vulnerable to disturbance not only because of their small geographical ranges, but also because of their high degree of specialization

    Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome

    Get PDF
    International audienceBackground: the incidence of the insulin resistance syndrome has increased at an alarming rate worldwide, creating a serious challenge to public health care in the 21st century. Recently, epide-miological studies have associated the prevalence of type 2 diabetes with elevated body burdens of persistent organic pollutants (POPs). However, experimental evidence demonstrating a causal link between POPs and the development of insulin resistance is lacking. Objective: We investigated whether exposure to POPs contributes to insulin resistance and meta-bolic disorders. Methods: Sprague-Dawley rats were exposed for 28 days to lipophilic POPs through the con-sumption of a high-fat diet containing either refined or crude fish oil obtained from farmed Atlantic salmon. In addition, differentiated adipocytes were exposed to several POP mixtures that mimicked the relative abundance of organic pollutants present in crude salmon oil. We measured body weight, whole-body insulin sensitivity, POP accumulation, lipid and glucose homeostasis, and gene expres-sion and we performed micro array analysis. Results: Adult male rats exposed to crude, but not refined, salmon oil developed insulin resis-tance, abdominal obesity, and hepatosteatosis. The contribution of POPs to insulin resistance was confirmed in cultured adipocytes where POPs, especially organochlorine pesticides, led to robust inhibition of insulin action. Moreover, POPs induced down-regulation of insulin-induced gene-1 (Insig-1) and Lpin1, two master regulators of lipid homeostasis. Conclusion: Our findings provide evidence that exposure to POPs commonly present in food chains leads to insulin resistance and associated metabolic disorder

    Incubation Behaviour of Common Eiders Somateria Mollissima in the Central Baltic: Nest Attendance and Loss in Body Mass

    Get PDF
    Here we present the recording of body mass change and weight loss during incubation in a Common Eider Somateria mollissima colony at Christiansø in the Central Baltic (55°19'N 15°11'E). The study was conducted during April and May 2015 and a total number of four birds were followed (two were lost due to predation and three due to power outages). Body mass and nesting behaviour was recorded electronically over a period of 26-27 days using automatic poultry scales and a surveillance video camera. During incubation, the eiders underwent a 28-37% loss in body mass and left the nest on average 13 times (range: 7-17 times) for a period of 7-70 min. In general, birds with high initial body mass left their nest for a shorter total time than birds with lower initial body mass. The recorded daily changes in body mass indicate that the eiders foraged during the incubation period, not just leaving the nest for rehydration or in response to disturbance, which improve our current understanding of eider incubation behaviour. Such information is important to fully understanding of eider breeding biology in order to better conserve and manage the species during its breeding seasons where individual birds undergo extreme stress that may affect reproductive outcome and adult survival

    Organophosphate esters in East Greenland polar bears and ringed seals: Adipose tissue concentrations and in vitro depletion and metabolite formation

    No full text
    East Greenland is a contamination “hot spot” for long-range transported anthropogenic chemicals, including organophosphate esters (OPEs). High concentrations of OPEs have been reported in arctic air while very little is known for wildlife where OPE tissue residues levels appear to be strongly influenced by biotransformation. In the present study, the hepatic in vitro metabolism of six environmentally relevant organophosphate (OP) triesters and corresponding OP diester formation were investigated in East Greenland polar bears (PBs) and ringed seals (RSs). The in vitro metabolism assay results were compared to adipose levels in field samples from the same individuals. In vitro OP triester metabolism was generally rapid and structure-dependent, where PBs metabolized OPEs more rapidly than RSs. Exceptions were the lack of triethyl phosphate (TEP) metabolism and slow metabolism of tris(2-ethylhexyl) phosphate (TEHP) in both species. OP diester metabolites were also formed with the exception of TEP which was not metabolized at all. Tris(1,3-dichloro-2-
    corecore