70 research outputs found

    Articulatory undershoot of vowels in isolated REM sleep behavior disorder and early Parkinson's disease.

    Get PDF
    Imprecise vowels represent a common deficit associated with hypokinetic dysarthria resulting from a reduced articulatory range of motion in Parkinson's disease (PD). It is not yet unknown whether the vowel articulation impairment is already evident in the prodromal stages of synucleinopathy. We aimed to assess whether vowel articulation abnormalities are present in isolated rapid eye movement sleep behaviour disorder (iRBD) and early-stage PD. A total of 180 male participants, including 60 iRBD, 60 de-novo PD and 60 age-matched healthy controls performed reading of a standardized passage. The first and second formant frequencies of the corner vowels /a/, /i/, and /u/ extracted from predefined words, were utilized to construct articulatory-acoustic measures of Vowel Space Area (VSA) and Vowel Articulation Index (VAI). Compared to controls, VSA was smaller in both iRBD (p = 0.01) and PD (p = 0.001) while VAI was lower only in PD (p = 0.002). iRBD subgroup with abnormal olfactory function had smaller VSA compared to iRBD subgroup with preserved olfactory function (p = 0.02). In PD patients, the extent of bradykinesia and rigidity correlated with VSA (r = -0.33, p = 0.01), while no correlation between axial gait symptoms or tremor and vowel articulation was detected. Vowel articulation impairment represents an early prodromal symptom in the disease process of synucleinopathy. Acoustic assessment of vowel articulation may provide a surrogate marker of synucleinopathy in scenarios where a single robust feature to monitor the dysarthria progression is needed

    Changes in Cataplexy Frequency in a Clinical Trial of Lower-Sodium Oxybate with Taper and Discontinuation of Other Anticataplectic Medications

    Get PDF
    Correction:Background Lower-sodium oxybate (LXB) is an oxybate medication with the same active moiety as sodium oxybate (SXB) and a unique composition of cations, resulting in 92% less sodium. LXB was shown to improve cataplexy and excessive daytime sleepiness in people with narcolepsy in a placebo-controlled, double-blind, randomized withdrawal study (NCT03030599). Additional analyses of data from this study were conducted to explore the effects of LXB on cataplexy, including the clinical course and feasibility of transition from other anticataplectics to LXB monotherapy. Objective The aim of these analyses was to evaluate cataplexy frequency during initiation/optimization of LXB and taper/discontinuation of prior antidepressant/anticataplectic medications. Methods Eligible participants (adults aged 18-70 years with narcolepsy with cataplexy) entered the study taking SXB only (group A), SXB + other anticataplectics (group B), or anticataplectic medication other than SXB (group C), or were cataplexy-treatment naive (group D). LXB was initiated/optimized during a 12-week, open-label, optimized treatment and titration period (OLOTTP). Other anticataplectics were tapered/discontinued during weeks 3-10 of OLOTTP. A 2-week stable-dose period (SDP; during which participants took a stable dose of open-label LXB) and 2-week double-blind randomized withdrawal period (during which participants were randomized to continue LXB treatment or switch to placebo) followed OLOTTP. Treatment-emergent adverse events (TEAEs) were recorded throughout the duration of the study. Results At the beginning of OLOTTP, median weekly cataplexy attacks were lower in participants taking SXB at study entry (SXB only [2.00]; SXB + other anticataplectics [0.58]) versus participants who were taking other anticataplectics (3.50) or were anticataplectic naive (5.83). Median weekly cataplexy attacks decreased during weeks 1-2 of OLOTTP in all groups. Increased cataplexy frequency was observed in participants tapering/discontinuing other anticataplectics during weeks 3-10 and was more prominent in participants taking other anticataplectics alone compared with those taking SXB plus other anticataplectics. Cataplexy frequency decreased throughout initiation/optimization in anticataplectic-naive participants. Median number of cataplexy-free days/week at the end of SDP (study week 14) was similar in all groups (6.0, 6.1, 6.0, and 6.2 in groups A, B, C, and D, respectively). During OLOTTP and SDP, TEAEs of worsening cataplexy were reported in 0%, 47.8%, 16.7%, and 2.2% of participants in groups A, B, C, and D, respectively; most TEAEs of worsening cataplexy were reported during tapering/discontinuation of other anticataplectics. Conclusions LXB monotherapy was effective in reducing cataplexy and increasing cataplexy-free days. These results illustrate the feasibility of switching from SXB to LXB while tapering/discontinuing other anticataplectics.Peer reviewe

    Diagnosis of central disorders of hypersomnolence: A reappraisal by European experts

    Get PDF
    Summary The aim of this European initiative is to facilitate a structured discussion to improve the next edition of the International Classification of Sleep Disorders (ICSD), particularly the chapter on central disorders of hypersomnolence. The ultimate goal for a sleep disorders classification is to be based on the underlying neurobiological causes of the disorders with clear implication for treatment or, ideally, prevention and or healing. The current ICSD classification, published in 2014, inevitably has important shortcomings, largely reflecting the lack of knowledge about the precise neurobiological mechanisms underlying the majority of sleep disorders we currently delineate. Despite a clear rationale for the present structure, there remain important limitations that make it difficult to apply in routine clinical practice. Moreover, there are indications that the current structure may even prevent us from gaining relevant new knowledge to better understand certain sleep disorders and their neurobiological causes. We suggest the creation of a new consistent, complaint driven, hierarchical classification for central disorders of hypersomnolence; containing levels of certainty, and giving diagnostic tests, particularly the MSLT, a weighting based on its specificity and sensitivity in the diagnostic context. We propose and define three diagnostic categories (with levels of certainty): 1/“Narcolepsy” 2/“Idiopathic hypersomnia”, 3/“Idiopathic excessive sleepiness” (with subtypes)Peer reviewe

    European guideline and expert statements on the management of narcolepsy in adults and children

    Get PDF
    Background and purpose: Narcolepsy is an uncommon hypothalamic disorder of presumed autoimmune origin that usually requires lifelong treatment. This paper aims to provide evidence-based guidelines for the management of narcolepsy in both adults and children. Methods: The European Academy of Neurology (EAN), European Sleep Research Society (ESRS), and European Narcolepsy Network (EU-NN) nominated a task force of 18 narcolepsy specialists. According to the EAN recommendations, 10 relevant clinical questions were formulated in PICO format. Following a systematic review of the literature (performed in Fall 2018 and updated in July 2020) recommendations were developed according to the GRADE approach. Results: A total of 10,247 references were evaluated, 308 studies were assessed and 155 finally included. The main recommendations can be summarized as follows: (i) excessive daytime sleepiness (EDS) in adults-scheduled naps, modafinil, pitolisant, sodium oxybate (SXB), solriamfetol (all strong); methylphenidate, amphetamine derivatives (both weak); (ii) cataplexy in adults-SXB, venlafaxine, clomipramine (all strong) and pitolisant (weak); (iii) EDS in children-scheduled naps, SXB (both strong), modafinil, methylphenidate, pitolisant, amphetamine derivatives (all weak); (iv) cataplexy in children-SXB (strong), antidepressants (weak). Treatment choices should be tailored to each patient's symptoms, comorbidities, tolerance and risk of potential drug interactions. Conclusion: The management of narcolepsy involves non-pharmacological and pharmacological approaches with an increasing number of symptomatic treatment options for adults and children that have been studied in some detail.Peer reviewe

    Atomically sharp domain walls in an antiferromagnet

    Full text link
    The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its relativistic quantum fundamentals to applications in information technologies. The traditional focus of the field on ferromagnets has recently started to shift towards antiferromagnets which offer a rich materials landscape and utility in ultra-fast and neuromorphic devices insensitive to magnetic field perturbations. Here we report the observation that domain walls in an epitaxial crystal of antiferromagnetic CuMnAs can be atomically sharp. We reveal this ultimate domain wall scaling limit using differential phase contrast imaging within aberrationcorrected scanning transmission electron microscopy, which we complement by X-ray magnetic dichroism microscopy and ab initio calculations. We highlight that the atomically sharp domain walls are outside the remits of established spin-Hamiltonian theories and can offer device functionalities unparalleled in ferromagnets.Comment: 8 pages, 4 figures, Supplementary informatio

    Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning

    Get PDF
    Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime sleepiness as a core feature. Due to the considerable overlap of symptoms and the rarity of the diseases, it is difficult to identify distinct phenotypes of CH. Machine learning (ML) can help to identify phenotypes as it learns to recognize clinical features invisible for humans. Here we apply ML to data from the huge European Narcolepsy Network (EU-NN) that contains hundreds of mixed features of narcolepsy making it difficult to analyze with classical statistics. Stochastic gradient boosting, a supervised learning model with built-in feature selection, results in high performances in testing set. While cataplexy features are recognized as the most influential predictors, machine find additional features, e.g. mean rapid-eye-movement sleep latency of multiple sleep latency test contributes to classify NT1 and NT2 as confirmed by classical statistical analysis. Our results suggest ML can identify features of CH on machine scale from complex databases, thus providing 'ideas' and promising candidates for future diagnostic classifications.</p

    Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study

    Get PDF
    Idiopathic REM sleep behaviour disorder (iRBD) is a powerful early sign of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This provides an unprecedented opportunity to directly observe prodromal neurodegenerative states, and potentially intervene with neuroprotective therapy. For future neuroprotective trials, it is essential to accurately estimate phenoconversion rate and identify potential predictors of phenoconversion. This study assessed the neurodegenerative disease risk and predictors of neurodegeneration in a large multicentre cohort of iRBD. We combined prospective follow-up data from 24 centres of the International RBD Study Group. At baseline, patients with polysomnographically-confirmed iRBD without parkinsonism or dementia underwent sleep, motor, cognitive, autonomic and special sensory testing. Patients were then prospectively followed, during which risk of dementia and parkinsonsim were assessed. The risk of dementia and parkinsonism was estimated with Kaplan-Meier analysis. Predictors of phenoconversion were assessed with Cox proportional hazards analysis, adjusting for age, sex, and centre. Sample size estimates for disease-modifying trials were calculated using a time-to-event analysis. Overall, 1280 patients were recruited. The average age was 66.3 \ub1 8.4 and 82.5% were male. Average follow-up was 4.6 years (range = 1-19 years). The overall conversion rate from iRBD to an overt neurodegenerative syndrome was 6.3% per year, with 73.5% converting after 12-year follow-up. The rate of phenoconversion was significantly increased with abnormal quantitative motor testing [hazard ratio (HR) = 3.16], objective motor examination (HR = 3.03), olfactory deficit (HR = 2.62), mild cognitive impairment (HR = 1.91-2.37), erectile dysfunction (HR = 2.13), motor symptoms (HR = 2.11), an abnormal DAT scan (HR = 1.98), colour vision abnormalities (HR = 1.69), constipation (HR = 1.67), REM atonia loss (HR = 1.54), and age (HR = 1.54). There was no significant predictive value of sex, daytime somnolence, insomnia, restless legs syndrome, sleep apnoea, urinary dysfunction, orthostatic symptoms, depression, anxiety, or hyperechogenicity on substantia nigra ultrasound. Among predictive markers, only cognitive variables were different at baseline between those converting to primary dementia versus parkinsonism. Sample size estimates for definitive neuroprotective trials ranged from 142 to 366 patients per arm. This large multicentre study documents the high phenoconversion rate from iRBD to an overt neurodegenerative syndrome. Our findings provide estimates of the relative predictive value of prodromal markers, which can be used to stratify patients for neuroprotective trials

    Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy

    Get PDF
    Narcolepsy has genetic and environmental risk factors, but the specific genetic risk loci and interaction with environmental triggers are not well understood. Here, the authors identify genetic loci for narcolepsy, suggesting infection as a trigger and dendritic and helper T cell involvement. Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix (R). Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix (R)

    HLA in isolated REM sleep behavior disorder and Lewy body dementia

    Get PDF
    peer reviewedSynucleinopathies-related disorders such as Lewy body dementia (LBD) and isolated/idiopathic REM sleep behavior disorder (iRBD) have been associated with neuroinflammation. In this study, we examined whether the human leukocyte antigen (HLA) locus plays a role in iRBD and LBD. In iRBD, HLA-DRB1*11:01 was the only allele passing FDR correction (OR = 1.57, 95 CI = 1.27–1.93, p = 2.70e-05). We also discovered associations between iRBD and HLA-DRB1 70D (OR = 1.26, 95\%CI = 1.12–1.41, p = 8.76e-05), 70Q (OR = 0.81, 95\%CI = 0.72–0.91, p = 3.65e-04) and 71R (OR = 1.21, 95\%CI = 1.08–1.35, p = 1.35e-03). Position 71 (pomnibus = 0.00102) and 70 (pomnibus = 0.00125) were associated with iRBD. Our results suggest that the HLA locus may have different roles across synucleinopathies
    • 

    corecore