253 research outputs found

    Meta-analysis of antiviral protection of white spot syndrome virus vaccine to the shrimp

    Get PDF
    Currently, white spot syndrome virus (WSSV) is one of the most serious pathogens that impacts shrimp farming around the world. A WSSV vaccine provides a significant protective benefit to the host shrimp. Although various types of vaccines against WSSV have emerged, the immune effects among them were not compared, and it remains unclear which type of vaccine has the strongest protective effect. Meanwhile, due to the lack of effective routes of administration and immunization programs, WSSV vaccines have been greatly limited in the actual shrimp farming. To answer these questions, this study conducted a comprehensive meta-analysis over dozens of studies and compared all types WSSV vaccines, which include sub-unit protein vaccines, whole virus inactivated vaccines, DNA vaccines and RNA-based vaccines. The results showed that the RNA-based vaccine had the highest protection rate over the other three types of vaccines. Among the various sub-unit protein vaccines, VP26 vaccine had the best protective effects than other sub-unit protein vaccines. Moreover, this study demonstrated that vaccines expressed in eukaryotic hosts had higher protection rates than that of prokaryotic systems. Among the three immunization modes (oral administration, immersion and injection) used in monovalent protein vaccines, oral administration had the highest protection rate. In natural conditions, shrimp are mostly infected by the virus orally. These results provide a guide for exploration of a novel WSSV vaccine and help facilitate the application of WSSV vaccines in shrimp farming

    Possible rodent equivalent of the posterior cingulate cortex (area 23) interconnects with multimodal cortical and subcortical regions

    Get PDF
    Posterior cingulate cortex (area 23, A23) in human and monkeys is a critical component of the default mode network and is involved in many diseases such as Alzheimer’s disease, autism, depression, attention deficit hyperactivity disorder and schizophrenia. However, A23 has not yet identified in rodents, and this makes modeling related circuits and diseases in rodents very difficult. Using a comparative approach, molecular markers and unique connectional patterns this study has uncovered the location and extent of possible rodent equivalent (A23~) of the primate A23. A23 ~ but not adjoining areas in the rodents displays strong reciprocal connections with anteromedial thalamic nucleus. Rodent A23 ~ reciprocally connects with the medial pulvinar and claustrum as well as with anterior cingulate, granular retrosplenial, medial orbitofrontal, postrhinal, and visual and auditory association cortices. Rodent A23 ~ projects to dorsal striatum, ventral lateral geniculate nucleus, zona incerta, pretectal nucleus, superior colliculus, periaqueductal gray, and brainstem. All these findings support the versatility of A23 in the integration and modulation of multimodal sensory information underlying spatial processing, episodic memory, self-reflection, attention, value assessment and many adaptive behaviors. Additionally, this study also suggests that the rodents could be used to model monkey and human A23 in future structural, functional, pathological, and neuromodulation studies

    Immobilization of enzyme and antibody on ALD-HfO2-EIS structure by NH3 plasma treatment

    Get PDF
    Thin hafnium oxide layers deposited by an atomic layer deposition system were investigated as the sensing membrane of the electrolyte-insulator-semiconductor structure. Moreover, a post-remote NH3 plasma treatment was proposed to replace the complicated silanization procedure for enzyme immobilization. Compared to conventional methods using chemical procedures, remote NH3 plasma treatment reduces the processing steps and time. The results exhibited that urea and antigen can be successfully detected, which indicated that the immobilization process is correct

    Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort

    Get PDF
    Background: Although growth advantage of certain clones would ultimately translate into a clinically visible disease progression, radiological imaging does not reflect clonal evolution at molecular level. Circulating tumor DNA (ctDNA), validated as a tool for mutation detection in lung cancer, could reflect dynamic molecular changes. We evaluated the utility of ctDNA as a predictive and a prognostic marker in disease monitoring of advanced non-small cell lung cancer (NSCLC) patients.Methods: This is a multicenter prospective cohort study. We performed capture-based ultra-deep sequencing on longitudinal plasma samples utilizing a panel consisting of 168 NSCLC-related genes on 949 advanced NSCLC patients with driver mutations to monitor treatment responses and disease progression. The correlations between ctDNA and progression-free survival (PFS)/overall survival (OS) were performed on 248 patients undergoing various treatments with the minimum of 2 ctDNA tests.Results: The results of this study revealed that higher ctDNA abundance (P=0.012) and mutation count (P=8.5x10(-4)) at baseline are associated with shorter OS. We also found that patients with ctDNA clearance, not just driver mutation clearance, at any point during the course of treatment were associated with longer PFS (P=2.2x10(-1)6, HR 0.28) and OS (P=4.5x10(-6), HR 0.19) regardless of type of treatment and evaluation schedule.Conclusions: This prospective real-world study shows that ctDNA clearance during treatment may serve as predictive and prognostic marker across a wide spectrum of treatment regimens

    Ground calibration of Gamma-Ray Detectors of GECAM-C

    Full text link
    As a new member of GECAM mission, GECAM-C (also named High Energy Burst Searcher, HEBS) was launched onboard the SATech-01 satellite on July 27th, 2022, which is capable to monitor gamma-ray transients from ∼\sim 6 keV to 6 MeV. As the main detector, there are 12 gamma-ray detectors (GRDs) equipped for GECAM-C. In order to verify the GECAM-C GRD detector performance and to validate the Monte Carlo simulations of detector response, comprehensive on-ground calibration experiments have been performed using X-ray beam and radioactive sources, including Energy-Channel relation, energy resolution, detection efficiency, SiPM voltage-gain relation and the non-uniformity of positional response. In this paper, the detailed calibration campaigns and data analysis results for GECAM-C GRDs are presented, demonstrating the excellent performance of GECAM-C GRD detectors.Comment: third versio
    • …
    corecore