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Abstract 

 
Introduction: Although growth advantage of certain clones would ultimately translate into 

a clinically visible disease progression, radiological imaging does not reflect clonal 

evolution at the molecular level. Circulating tumor DNA (ctDNA), validated as a tool for 

mutation detection in lung cancer, reflects dynamic molecular changes.  

Methods: We performed capture-based ultra-deep sequencing on longitudinal plasma 

samples utilizing a panel consisting of 168 non-small cell lung cancer (NSCLC)-related 

genes on 949 advanced NSCLC patients with drive mutations to monitor treatment 

responses and disease progression. Detailed survival analyses regarding the correlations 

between ctDNA and progression-free survival (PFS)/overall survival (OS) were performed 

on 248 patients undergoing heterogeneous treatments with a minimum of 2 ctDNA tests.  

Results:  This study revealed that higher ctDNA abundance (p=0.012) and mutation count 

(p=8.5x10-4) at baseline are associated with inferior OS. The association between ctDNA 

and PFS/OS was performed in a sub-cohort consisting of 248 patients with a minimum of 

2 evaluations beyond baseline. We revealed that patients with ctDNA clearance, not just 

driver mutation clearance, at any point during the course of treatment are associated with 

a longer PFS (p=2.2x10-16 HR=0.28) and OS (p=4.5x10-6 HR=0.19) regardless of the type 

of treatment commenced and the evaluation schedule.  

Conclusion: This prospective real-world study demonstrates that ctDNA clearance during 

treatment can serve as a predictive and a prognostic marker across a wide spectrum of 

treatment regimens.  
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Introduction   
 

The treatment of patients with advanced NSCLC has been revolutionized with the 

development of therapies directed at specific genetic alterations. The characterization of 

NSCLC into subtypes based on their genetic alterations has significantly improved the 

therapeutic efficacies of targeted therapies and disease outcomes in a subgroup of patients 

1-4. However, their efficacies are compromised by the development of resistance 

mechanisms, which inevitably arise in all patients with a median PFS ranging from a few 

months to a year due to clonal evolution 5-7. Currently, the response assessment primarily 

relies on imaging modalities, which do not reflect clonal evolution at the molecular level8. 

Therefore, there is an urgent need to develop improved modalities for monitoring clonal 

evolution. 

The genomic profile of ctDNA, predominantly released by apoptosis and necrosis 

of cancer cells, has been shown to closely match those of tumor samples 9,10. It has been 

validated as surrogate material for mutation detection in NSCLC11-13. For instance, plasma 

and tissue-based genotyping for EGFR T790M yielded equivalent clinical outcomes of 

Osimertinib, supporting plasma genotyping as an alternative diagnostic option14.  Much 

effort has been invested in exploring the potential of ctDNA in monitoring responses and 

assessing the emergence of drug resistance15-17. Among patients undergoing epidermal 

growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment, a reduction in the 

allelic fraction (AF) of EGFR mutation reflects sensitivity to such inhibitors 18.  In addition, 

ctDNA has been instrumental in revealing novel resistance mechanisms, such as acquired 

EGFR C797S to osimertinib5, MET Y1248H and D1246N to c-Met inhibitors etc 19.  
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Patients harboring the same mutation exhibit marked differences in treatment 

responses 2. Circulating tumor DNA has been proposed to serve as noninvasive real-time 

biomarker to provide prognostic and predictive information in treatment monitoring 20-22. 

The prognostic value of ctDNA has been well-established in detecting minimal residual 

disease following surgery or treatment with curative intent and is being explored in 

treatment responses of advanced patients 23-26. A recent study has shown that the presence 

of ctDNA at diagnosis and the detection of residual ctDNA at first evaluation were 

associated with poor prognosis21. More work is needed to comprehensively examine its 

prognostic and predictive values in cohorts consisting of diverse treatment history.     

In this prospective real-world study, we performed capture-based ultra-deep 

targeted sequencing on longitudinal plasma samples to investigate the potential of ctDNA 

analysis at various treatment milestones in predicting clinical outcomes. We explored the 

genomic landscape of 1,336 Chinese patients with advanced NSCLC and focused on 248 

of them with a minimum of 2 monitoring points to interrogate the predictive and prognostic 

value of ctDNA as well as to investigate the dynamics of ctDNA upon pharmacological 

intervention by using a panel consisting of 168 NSCLC-related genes, covering 170KB of 

human genome.  
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Materials and Methods  

Patient selection  

From September 2015 to October 2016, advanced NSCLC (stage IIIB to IV) patients 

with specified mutations in at least one of the following genes EGFR, ALK, ROS 1, RET, 

KRAS, PIK3CA, ERBB2, MET, and BRAF were enrolled. Their longitudinal plasma 

samples were collected at baseline and various points throughout the treatment at multiple 

participating insititutes. Detailed inclusion criteria were listed in supplemental methods. 

This study was approved by a central ethic committee at Nanjing General Hospital of 

Nanjing Command (2016NZKY-003-02). All other centers were covered by this protocol 

except for First Affiliated Hospital of Guangzhou Medical University (IRB2016-26) and 

Tianjin Medical School Affiliated General Hospital (IRB2016-050-01). All patients gave 

informed consent to participate in the study and gave permission for the use of their 

peripheral blood. 

NGS library preparation and Capture-based targeted DNA sequencing 

Fragments of size 200–400bp were selected by AMPure beads (Agencourt AMPure 

XP Kit), followed by hybridization with capture probe baits, hybrid selection with 

magnetic beads and PCR amplification. Indexed samples were sequenced on Nextseq500 

sequencer (Illumina, Inc., USA) with pair-end reads. An average depth of 11,816x was 

reached.  

Statistical Analysis  
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All statistical tests were conducted in R (version 3.3.1), and all were 2-sided tests 

unless otherwise specified. For patient characteristics, the differences in distribution of 

continuous and categorical variables across groups were assessed using Wilcoxon and 

Fisher exact tests, respectively.  Survival tests were conducted using log-rank tests or Cox 

regression models when a co-variant was included. 
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Results  

Patient demographics and study design  

Within the screened population, 949 harbored driver mutation; 245 had no mutation 

detected and the remaining 142 patients had non-driver mutation. Approximately, 16% 

patients were treatment-naïve (207/1,336); 71% (949/1,336) were previously treated and 

the remaining 13.5% (181/1,336) had no treatment history information available. Thirty-

one percent of patients (410/1,336) had 1 line of previous treatment; 18.2% (244/1,336) 

had 2 lines; 11.1% (149/1,336) had 3 lines and the remaining 10.9% (146/1,336) had more 

than 3 lines of treatment (Figure 1A). The median follow-up time for patients enrolled in 

our study was 322 days. The median interval for ctDNA analysis was 95 days. Figure 1B 

depicts detailed treatment history (outer ring) and treatment information during our study 

(inner ring). Among the 949 patients harbored driver mutations at baseline, 376 patients 

received matched targeted therapy (MTT) according to sequencing results. A zoom-in view 

of their treatment prior to and during our study was shown in Supplemental Figure 1. 

Detailed survival analysis was performed on 248 patients (longitudinal cohort) with 2 or 

more evaluation time points beyond baseline. A total of 280 patients had 2 or more follow-

up tests and 32 of them were excluded due to various reasons. The selection of patients 

enrolled in the follow-up cohort was depicted in Fiugre1A.  

We first compared and contrasted baseline clinical parameters, including gender, 

age, smoking history, histology, stage, treatment history and metastatic sites between the 

longitudinal and the screened cohort. Our data demonstrated that the two cohorts were 

similar in most of parameters, except for gender and the percentage patients with bone 

metastasis (Supplemental Table 1). The longitudinal cohort had a female predominance, 
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had more people with bone metastasis and EGFR mutations. Since the presence of driver 

mutations is one of our inclusion criteria and EGFR is the most frequently occurred driver 

mutation in NSCLC, approximately 50% of patients harbored EGFR mutations, which are 

associated with a female predominance.  However, such differences do not skew analyses 

performed in this study.  

Landscape of baseline mutation  

We performed capture-based ultra deep targeted sequencing on all baseline plasma 

samples using a panel consisting of 168 genes, spanning 170KB of human genome. The 

design and validation of this panel has been described by Mao et al 9. It achieved 95% and 

87% by-variant sensitivity in identifying mutations from matched tissue and plasma 

samples, respectively, excluding copy number variations (CNVs) 9. DNA obtained from 

white blood cells (WBCs) was used as a reference to filter out germline mutations. Overall, 

an average of 11,816x sequencing depth was achieved.  

At baseline, we identified 3,503 aberrations spanning 132 genes, including 2,204 

single-nucleotide variants (SNVs), 693 insertions or deletions (Indels), 412 copy-number 

amplifications (CNAs), 80 copy number deletions, and 114 translocations. Approximately, 

18% of patients (245/1,336) had no mutations detected from this panel. EGFR was the 

most frequently mutated gene, followed by TP53, occurring in 55% and 41% of patients, 

respectively. Among all genetic aberrations identified, well-established NSCLC driver 

mutations, including EGFR, KRAS, BRAF, ERBB2, ALK, RET and ROS1, comprised 46.9% 

of all variants identified. The overview of the mutation spectrum is shown in Figure 2A.  

Next, we investigated the clinical relevance of baseline max allelic fraction (max 

AF) and total cell-free DNA (cfDNA). MaxAF was defined as the maximum allelic fraction 
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among all somatic mutations identified in a plasma sample. Higher maxAF and cfDNA 

were associated with more advanced M stage, a higher likelihood of bone/liver metastasis 

and having more organs with lesions (Figure 2B). Interestingly, maxAF showed a more 

significant correlation than the amount of cfDNA with all clinical features tested.  

Overall survival is correlated with baseline ctDNA abundance and mutation load 

We performed detailed analysis on the longitudinal cohort to assess the predictive 

and prognostic potential of ctDNA. First, we investigated the correlation between overall 

survival (OS) and baseline parameters, including ctDNA abundance and mutation load. 

Previous studies interrogating the correlation between mutation load at baseline and overall 

survival have given inconsistent results 27,28.  Our data revealed an inverse correlation 

between baseline ctDNA amount imputed by the product of maxAF and total amount of 

cfDNA and OS (p=0.012). The mutation count was also inversely correlated with OS 

independent of baseline ctDNA amount (P=8.5x10-4) (Figure 3A-B). Next, we derived a 

molecular signature for OS prediction using multi-variate stepwise regression, starting 

from 6 gens that were individually associated with OS: CDKN2A, EGFR, KEAP1, KRAS, 

MET and POM121L12. The final molecular signature consists of KEAP1, KRAS and MET. 

Patients with no mutations in these genes are associated with a longer OS (p<0.0001) 

(Figure 3C).  

ctDNA clearance predicts longer progression-free survival and overall survival 
 

In clinical settings, treatment response is typically monitored on a regular interval 

by radiological imaging, which does not reflect clonal evolution.  We interrogated the 

potential of utilizing ctDNA as a surrogate for monitoring treatment response using our 

longitudinal cohort, which had at least 2 ctDNA tests. After a median follow-up of 157 
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days, 166 (66.9%) patients reached disease progression. During the course of treatment, 

123 patients, treated with either MTT or chemotherapy, had a minimum of one time of 

ctDNA clearance, occurring from 1 month to 15 months after the commencement of 

treatment, with a median PFS of 8.6 months.  Fifty patients achieved partial response (PR), 

67 achieved stable disease (SD) and 3 achieved progressive disease (PD) as their best 

response, resulting in an overall response rate (ORR) of 41.7% and a disease control rate 

(DCR) of 97.5%. Up to June 25, 2017, median overall survival (OS) for this group has not 

been reached.  In contrast, 125 patients with consistent detectable ctDNA throughout the 

course of treatment had a median PFS of 4.1 months and a median OS of 16.7 months. 

Among them, 14 achieved PR, 64 achieved SD and 38 achieved PD as their best response, 

resulting in an ORR of 12.1% and a DCR of 67.2%. Taken together, our data revealed that 

patients with a minimum of one time ctDNA clearance are associated with a longer PFS 

(p=2.2x10-16; HR=0.28) and OS (p=4.5x10-6 HR=0.19) independent of baseline ctDNA 

amount, regardless of the type of treatment commenced and the time of evaluation (Figure 

4A). The baseline clinical parameters including gender, smoking history, stage, treatment 

history etc of patients with minimum of one time ctDNA clearance and patients with 

consistent detectable ctDNA were comparable, except for gender (Supplemental Table 2).  

Furthermore, patients with a minimum of one time ctDNA clearance had a better ORR 

(p=3.9x10-7) and DCR (p=1.4x10-10) comparing to patients had detectable ctDNA 

throughout the course of treatment. The same trend was observed for patients treated with 

MTT (Figure 4B) but not for patients treated with chemotherapy (Supplemental Figure 2). 

Circulating tumor DNA clearance can predict PFS (p=0.022) but not OS (p=0.22) in 

chemotherapy-treated patients after controlling for baseline ctDNA amount. Collectively, 
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our data demonstrate ctDNA can serve as a valuable real-time biomarker to monitor 

therapeutic response and its clearance at any point of treatment can predict treatment 

benefits. This phenomenon reflects clonal response, thus demonstrating the biological 

nature underlying the clinical response.  

Previous studies have reported a reduction in ctDNA amount during treatment is 

associated with favorable therapeutic efficacy 21. Next, we evaluated whether ctDNA 

clearance or certain degree of ctDNA reduction reflected by maxAF would better correlate 

with treatment efficacies. To derive a binary classifier which can differentiate the 

population based on treatment efficacy, we conducted a receiving operating curve (ROC) 

analysis of changes in maxAF during the course of treatment and identified a reduction in 

maxAF to zero as the optimal cutoff, achieving an area under curve (AUC) of 75% (Figure 

4C). Change in maxAF was defined as the ratio of smallest maxAF detected in follow-up 

evaluations and baseline.  Thus, ctDNA clearance but not its reduction upon 

pharmacological interventions serves as a predictive marker. 

Next, we evaluated whether the clearance of driver mutation can provide equal 

predictive power as ctDNA clearance for PFS. We compared PFS among 3 groups of 

patients: with all mutation clearance, only driver mutation clearance and with the presence 

of driver mutations. No difference in PFS was observed for patients with only driver 

mutation clearance and patients with driver mutation, suggesting only monitoring 

corresponding driver mutation can not predict PFS (Figure 4D).  

Early detection of disease progression   

                We investigated whether a re-elevation in ctDNA can be detected prior to 

radiological assessment of disease progression. Due to the heterogeneity of treatments in 
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our cohort, we focused on patients undergoing osimertinib treatment (n=74) to examine 

the potential of ctDNA in early detection of PD. Forty patients experienced radiological 

PD; among whom, 53.1% had at least one liquid biopsy prior to radiological assessment of 

PD.  A comparison of ctDNA level reflected by maxAF among baseline and all points prior 

to radiological assessment of PD was performed. Fifty-three percent of patients showed an 

elevation of ctDNA comparing to baseline reflected by either an increase in allelic fraction 

of any existing mutation or the emergence of new mutation prior to PD assessed by 

radiological modalities, with an average leading time of 64 days (Figure 5).  Collectively, 

our data demonstrate the ability of ctDNA in reflecting disease progression and can occur 

prior to radiological PD.  
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Discussion  

Therapeutic response is often assessed using radiological imaging, which does not 

capture clonal dynamics and evolutionary changes upon pharmacological interventions. 

Recent studies have demonstrated the potential of ctDNA as a tool for real-time tracking 

of molecular dynamics to predict treatment response based on residual disease 21,22. In this 

study, we evaluated the potential of ctDNA by performing capture-based ultra deep 

sequencing on longitudinal plasma samples obtained at various treatment milestones from 

248 advanced NSCLC patients. Our real world study, comprising both treatment-naïve and 

previously treated patients, demonstrates ctDNA can serve as a valuable real-time 

biomarker to monitor therapeutic response and its clearance at any point of treatment can 

predict treatment benefits. Circulating tumor DNA clearance is defined as no mutation 

detected from this panel with an average sequencing depth of 11,816x and 0.2% limit of 

detection. Patients with a minimum of one time ctDNA clearance during the course of 

treatment were associated with a statistically significant longer PFS and OS. In contrast, 

patients with detectable ctDNA throughout the course of treatment are associated with 

inferior treatment response and survival.  We cannot rule out the possibility that patients 

with ctDNA clearance had mutations with AFs below the limit of detection-0.2%.  

The prognostic value of ctDNA at first evaluation has been reported in a prospective 

study comprising only newly diagnosed patients undergoing first-line treatment 21. Our 

study, consisting of a heterogeneous population and diverse evaluation schedules, not only 

confirmed the finding from previous study, but also extended the power of ctDNA analysis 

in predicting treatment benefits to all patients regardless of treatment history and evaluation 

time. Furthermore, we demonstrated that ctDNA clearance can translate to clinical benefits 
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reflected by longer PFS and OS. Our study warrants further investigations to explore the 

value of ctDNA clearance as surrogate endpoint of efficacy and as a risk stratification factor, 

differentiating poor and favorable prognosis.  

Our study also revealed the potential of ctDNA in early detection of disease 

progression, preceding imaging modalities with a median lead time of 64 days. This finding 

echoes with previous studies across a range of different cancer types, including but not 

limited to breast cancer 29, colorectal cancer and NSCLC21,30.  However it is important to 

note this study was not designed to assess how much earlier ctDNA can detect disease 

progression than imaging modalities; in many patients, ctDNA analysis and CT scans were 

not performed in close time frame.  It is also noteworthy to point out that for heavily treated 

patients, earlier detection of PD can only offer limited survival benefits due to the 

exhaustion of treatment options, suggesting the value of early detection of PD at the 

molecular level in guiding treatment may be better reflected in first-line patients.  In most 

cases, ctDNA analysis was performed after the assessment of PD by imaging modalities. 

Therefore, further prospective studies are needed to confirm earlier detection of PD by 

ctDNA and to accurately define the lead time.  Prospective studies evaluating the clinical 

impact of early therapeutic switch based on ctDNA presence instead of imaging modalities 

are needed to fully validate our findings.   

The prognostic and predictive value of ctDNA concentration prior to treatment has 

always been a controversial issue with conflicting data reported. Most of studies have 

reported high ctDNA level at baseline is associated with unfavorable PFS and OS; in 

contrast, others have reported there is no clear correlation 21,31,32.  In this study, we also 

evaluated the prognostic value of baseline ctDNA amount in relation to OS and revealed 
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an inverse correlation.  The heterogeneity of our cohort, reflected by diverse treatment 

history, staging and tumor burden, may affect the analysis.  Furthermore, a recently 

published study has shown novel determinants of ctDNA detection in NSCLC, including 

the degree necrosis, lymph node involvement, lymphovascular invasion, pathological 

tumor size, Ki67 labelling indices and tumor histology33.  Therefore, large cohort studies 

controlling for such factors are needed to accurately define the prognostic and predictive 

value of baseline ctDNA. Furthermore, we also derived a molecular signature, which 

predicts OS. There are a few limitations associated with this study, including the 

heterogeneity of treatment and evaluation time. Because this is a real world study, a few 

conclusions are limited in scope, such as the lead time of ctDNA in detecting PD comparing 

to imaging modalities.   

To the best of our knowledge, this is the largest real-world study consisting of 

Chinese NSCLC patients to interrogate the value of ctDNA in monitoring treatment 

responses. Taken together, our study demonstrated the predictive and prognostic value of 

ctDNA clearance during treatment in a heterogeneous population with diverse treatment 

regiments and evaluation schedules. Furthermore, we demonstrated ctDNA analysis 

coupled with NGS is clinically meaningful in patients with advanced NSCLC by 

identifying driver mutations and resistance mechanisms to reflect dynamic molecular 

changes, thus guiding subsequent treatment.  
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Figure Legends  

Figure 1 Overview of our cohorts. A. Schematic diagram delineates the presence or 

absence of driver mutations, treatment lines, follow-up time and number of ctDNA 

performed during the study.  We screened 1,336 patients (screened cohort) to arrive at 949 

patients with driver mutations to enroll in our study (enrolled cohort). Survival analyses 

were performed on 248 patients with 2 or more follow-up tests (longitudinal cohort).  A 

total of 280 patients had 2 or more follow-up tests and 32 of them were excluded due to 

listed reasons. B. This diagram illustrates the treatment history and treatment used in our 

study of the screened cohort. The outer ring represents treatment history and inner ring 

represents treatment used in our study. Different colors refer to different treatments.  

Figure 2 Mutations identified in baseline plasma samples. A. Oncoprint of mutations 

identified at baseline of the screened cohort. Different colors denote different types of 

mutations. Top bar represents the number of mutations a patient carries; side bar represents 

the number of patients carry a certain mutation. Bottom bars provide information regarding 

histology, gender and treatment history B. Clinical characteristics (M stage, presence of 

bone metastasis, presence of liver metastasis and number of organs with lesions) associated 

with maxAF and cfDNA. T-test or Pearson correlation test was applied for continuous 

variables or binary variables, respectively. Boxplots of both variables over the 

dichotomized clinical features are shown. 

Figure 3 Correlation between baseline characteristics and overall survival. A) ctDNA 

B) mutation count. C) A signature consisting of KEAP1, KRAS and MET can predict OS. 

Patients with no mutation in the above 3 genes have a longer OS than patients with mutation 

in any one of the above 3 genes. * denotes p-value derived from cox regression model.  
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Figure 4 Predictive and prognostic value of ctDNA clearance during the course of 

treatment. A. Kaplan-Meier curves for PFS and OS in patients with a minimum of one 

time ctDNA clearance vs patients with consistent detectable ctDNA throughout the course 

of treatment. B. patients treated with MTT. C. ROC curve for changes in maxAF during 

the course of treatment. A reduction of maxAF to zero is the optimal cutoff with an AUC 

of 75%. D. Kaplan-Meier curves for PFS in patients with driver mutation clearance, all 

mutation clearance and patients with the presence of both driver and other mutations 

throughout the course of treatment. 

Figure 5 Detection of ctDNA as a function of time in patients treated with osimeritinib.  

Circulating DNA analysis schedule was depicted for each patient treated with osimertinib. 

Each line represents a patient. The length of each line corresponds to the duration of 

monitoring by ctDNA. The color dot at the beginning of each line represents the clinical 

response. Green represents no molecular progression prior to radiological progression (no 

re-elevation of ctDNA or emergence of new mutation); Yellow represents molecular 

progression proceeds radiological PD. Purple represents patients with fast progression. 

They achieved radiological PD at first evaluation. Grey dots represent patients without 

enough information to assess the sequence of radiological PD or molecular PD primary 

due to infrequent testing. X represents ctDNA clearance. Solid red squares represent 

molecular PD. Empty red squares represent no molecular PD. Solid black dots represent 

radiological PD; empty black dots represent radiological SD or PR.     
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