5,509 research outputs found

    The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression

    Full text link
    Neuroblastoma is the most common solid tumor during early childhood. One of the key features of neuroblastoma is extensive tumor-driven angiogenesis due to hypoxia. However, the mechanism through which neuroblastoma cells drive angiogenesis is poorly understood. Here we show that the long noncoding RNA MALAT1 was upregulated in human neuroblastoma cell lines under hypoxic conditions. Conditioned media from neuroblastoma cells transfected with small interfering RNAs (siRNA) targeting MALAT1, compared with conditioned media from neuroblastoma cells transfected with control siRNAs, induced significantly less endothelial cell migration, invasion and vasculature formation. Microarray-based differential gene expression analysis showed that one of the genes most significantly downregulated following MALAT1 suppression in human neuroblastoma cells under hypoxic conditions was fibroblast growth factor 2 (FGF2). RT-PCR and immunoblot analyses confirmed that MALAT1 suppression reduced FGF2 expression, and Enzyme-Linked Immunosorbent Assays revealed that transfection with MALAT1 siRNAs reduced FGF2 protein secretion from neuroblastoma cells. Importantly, addition of recombinant FGF2 protein to the cell culture media reversed the effects of MALAT1 siRNA on vasculature formation. Taken together, our data suggest that up-regulation of MALAT1 expression in human neuroblastoma cells under hypoxic conditions increases FGF2 expression and promotes vasculature formation, and therefore plays an important role in tumor-driven angiogenesis

    A tryst of ‘blood pressure control- sex- comorbidities’:the odyssey of basic public health services in Yunnan in quest for truth

    Get PDF
    Background: The Basic Public Health Service (BPHS), a recently announced free healthcare program, aims to combat the most prevalent Noncommunicable Disease-“Hypertension” (HTN)-and its risk factors on a nationwide scale. In China, there is a rife that HTN less impacts women during their lifetime. We, therefore, aimed to evaluate the sex disparity in hypertension patients with comorbidities among south-west Chinese and the contribution of BPHS to address that concern. Methods: We have opted for a multistage stratified random sampling method to enroll hypertensive patients of 35 years and older, divided them into BPHS and non-BPHS groups. We assessed the sex disparity in HTN patients with four major comorbidities- Dyslipidemia, Diabetes Mellitus (DM), Cardiovascular Disease (CVD), and Chronic Kidney Disease (CKD), and descriptive data were compiled. Odds ratios from logistic regression models estimated the effectiveness of BPHS in the management of HTN with comorbidities. Results: Among 1521 hypertensive patients,1011(66.5%) were managed in the BPHS group. The proportion of patients who had at least one comorbidity was 70.7% (95% confidence interval [CI]: 66.3-76.8%), patients aged 65 years and older were more likely to have coexisting comorbidities. Participants who received the BPHS showed significant blood pressure (BP) control with two comorbidities (odds ratio [OR] = 2.414, 95% CI: 1.276–4.570), three or more (OR = 5.500, 95%CI: 1.174–25.756). Patients with dyslipidemia and DM also benefited from BPHS in controlling BP (OR = 2.169, 95% CI: 1.430–3.289) and (OR = 2.785, 95%CI: 1.242–6.246), respectively. In certain high-income urban survey centers, there was sex differences in the HTN management provided by BPHS, with men having better BP control rates than women. Conclusions: Perhaps this is the first study in China to succinctly show the effectiveness and sex disparity regarding “management of hypertensive comorbidities”. This supports that the BPHS program plays a pivotal role in controlling BP, therefore should recommend the national healthcare system to give women a foremost priority in BPHS, especially to those from low-socioeconomic and low-scientific literacy regions.</p

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103

    Get PDF
    Orexins are neuropeptides that regulate the sleep-wake cycle and feeding behaviour. QRFP is a newly discovered neuropeptide which exerts similar orexigenic activity, thus playing an important role in energy homeostasis and regulation of appetite. The exact expression and signalling characteristics and physiological actions of QRFP and its receptor GPR103 are poorly understood. Alzheimerâ €™ s disease (AD) patients experience increased nocturnal activity, excessive daytime sleepiness, and weight loss. We hypothesised therefore that orexins and QRFP might be implicated in the pathophysiology of AD. We report that the down-regulation of hippocampal orexin receptors (OXRs) and GPR103 particularly in the cornu ammonis (CA) subfield from AD patients suffering from early onset familial AD (EOFAD) and late onset familial AD (LOAD). Using an in vitro model we demonstrate that this downregulation is due to to Aβ-plaque formation and tau hyper-phosphorylation. Transcriptomics revealed a neuroprotective role for both orexins and QRFP. Finally we provide conclusive evidence using BRET and FRET that OXRs and GPR103 form functional hetero-dimers to exert their effects involving activation of ERK 1/2. Pharmacological intervention directed at the orexigenic system may prove to be an attractive avenue towards the discovery of novel therapeutics for diseases such as AD and improving neuroprotective signalling pathways

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    Tumor Suppressor RASSF1A Promoter: p53 Binding and Methylation

    Get PDF
    Oncogenes and tumor suppressors work in concert to regulate cell growth or death, which is a pair of antagonist factors for regulation of tumorigenesis. Here we show promoter characteristic of tumor suppressor RASSF1A, which revealed a p53 binding site in the distal and a GC-rich region in the proximal promoter region of RASSF1A, in despite of TATA box-less. The GC-rich region, which is ∼300 bp upstream from the RASSF1A ATG, showed the strongest promoter activity in an assay of RASSF1A-driving GFP expression. Methylation analysis of the CpG island showed that 78.57% of the GC sties were methylated in testis tumor samples compared with methylation-less in normal testis. Hypermethylation of the GC-rich region is associated with RASSF1A silencing in human testis tumors. In addition, electrophoretic mobility shift assay indicated that p53 protein bound to the RASSF1A promoter. Further chromatin immunoprecipitation confirmed p53 binding to the RASSF1A. Moreover, p53 binding to the promoter down-regulated RASSF1A expression. These results suggest that p53 protein specifically binds to the RASSF1A promoter and inhibits its expression. Our results provide new insight into the mechanism of action of tumor suppressors and may be a starting point for development of new approaches to cancer treatment

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Can Measuring the ‘Dual Anchors of Aorta’ Enhance the Success Rate of TAVR?—A Single-Center Experience

    Get PDF
    Introduction: Chronic severe aortic regurgitation (AR) has a poor long-term prognosis, especially among old-age patients. Considering their advancing age, the surgical approach of aortic valve replacement may not always be the best alternative modality of treatment in such patients. Therefore, this study’s primary goal was to provide an initial summary of the medium- and short-term clinical effectiveness of transcatheter aortic valve replacement (TAVR) guided by accurate multi-detector computed tomography (MDCT) measurements in patients with severe and chronic AR, especially in elderly patients. Methods: The study enrolled retrospectively and prospectively patients diagnosed with severe AR who eventually underwent TAVR procedure from January 2019 to September 2022 at Fuwai cardiovascular Hospital, Beijing. Baseline information, MDCT measurements, anatomical classification, perioperative, and 1-year follow-up outcomes were collected and analyzed. Based on a novel anatomical categorization and dual anchoring theory, patients were divided into four categories according to the level of anchoring area. Type 1, 2, and 3 patients (with at least two anchoring regions) will receive TAVR with a transcatheter heart valve (THV), but Type 4 patients (with zero or one anchoring location) will be deemed unsuitable for TAVR and will instead receive medical care (retrospectively enrolled patients who already underwent TAVR are an exception). Results: The mean age of the 37 patients with severe chronic AR was 73.1 ± 8.7 years, and 23 patients (62.2%) were male. The American Association of Thoracic Surgeons’ score was 8.6 ± 2.1%. The MDCT anatomical classification included 17 cases of type 1 (45.9%), 3 cases of type 2 (8.1%), 13 cases of type 3 (35.1%), and 4 cases of Type 4 (10.8%). The VitaFlow valve (MicroPort, Shanghai, China) was implanted in 19 patients (51.3%), while the Venus A valve (Venus MedTech, Hangzhou, China) was implanted in 18 patients (48.6%). Immediate TAVR procedural and device success rates were 86.5% and 67.6%, respectively, while eight cases (21.6%) required THV-in-THV implantation, and nine cases (24.3%) required permanent pacemaker implantation. Univariate regression analysis revealed that the major factors affecting TAVR device failure were sinotubular junction diameter, THV type, and MDCT anatomical classification (p &lt; 0.05). Compared with the baseline, the left ventricular ejection fraction gradually increased, while the left ventricular end-diastolic diameter remained small, and the N-terminal-pro hormone B-type natriuretic peptide level significantly decreased within one year. Conclusion: According to the results of our study, TAVR with a self-expanding THV is safe and feasible for patients with chronic severe AR, particularly for those who meet the criteria for the appropriate MDCT anatomical classification with intact dual aortic anchors, and it has a significant clinical effect for at least a year.</p

    Impaired Resting-State Functional Integrations within Default Mode Network of Generalized Tonic-Clonic Seizures Epilepsy

    Get PDF
    Generalized tonic-clonic seizures (GTCS) are characterized by unresponsiveness and convulsions, which cause complete loss of consciousness. Many recent studies have found that the ictal alterations in brain activity of the GTCS epilepsy patients are focally involved in some brain regions, including thalamus, upper brainstem, medial prefrontal cortex, posterior midbrain regions, and lateral parietal cortex. Notably, many of these affected brain regions are the same and overlap considerably with the components of the so-called default mode network (DMN). Here, we hypothesize that the brain activity of the DMN of the GTCS epilepsy patients are different from normal controls, even in the resting state. To test this hypothesis, we compared the DMN of the GTCS epilepsy patients and the controls using the resting state functional magnetic resonance imaging. Thirteen brain areas in the DMN were extracted, and a complete undirected weighted graph was used to model the DMN for each participant. When directly comparing the edges of the graph, we found significant decreased functional connectivities within the DMN of the GTCS epilepsy patients comparing to the controls. As for the nodes of the graph, we found that the degree of some brain areas within the DMN was significantly reduced in the GTCS epilepsy patients, including the anterior medial prefrontal cortex, the bilateral superior frontal cortex, and the posterior cingulate cortex. Then we investigated into possible mechanisms of how GTCS epilepsy could cause the reduction of the functional integrations of DMN. We suggested the damaged functional integrations of the DMN in the GTCS epilepsy patients even during the resting state, which could help to understand the neural correlations of the impaired consciousness of GTCS epilepsy patients
    corecore