1,949 research outputs found

    NKX3-1 (NK3 homeobox 1)

    Get PDF
    Review on NKX3-1 (NK3 homeobox 1), with data on DNA, on the protein encoded, and where the gene is implicated

    Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

    Get PDF
    Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1–100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.National Science Foundation (U.S.) (MIT Center for Bits and Atoms (NSF CCR0122419))Massachusetts Institute of Technology. Media LaboratoryKorea Foundation for Advanced StudiesSamsung Electronics Co. (research internship)Harvard University. Society of FellowsWallace H. Coulter Foundation (Early Career Award)Brain & Behavior Research Foundation (Young Investigator Award)National Science Foundation (U.S.)National Institutes of Health (U.S.) (Director’s New Innovator Award

    Targeted gene therapy of nasopharyngeal cancer in vitro and in vivo by enhanced thymidine kinase expression driven by human TERT promoter and CMV enhancer

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>To explore the therapeutic effects of thymidine kinase (TK) expressed by enhanced vector pGL3-basic- hTERTp-TK-EGFP-CMV driven by human telomerase reverse transcriptase promoter (hTERTp) as well as cytomegalovirus immediate early promoter enhancer (CMV).</p> <p>Materials/Methods</p> <p>Enhanced TK-EGFP expression was confirmed by fluorescent microscopy, real time PCR and telomerase activity. Its effects were examined by survival of tumor cells NPC 5-8F and MCF-7, index of xenograft implanted in nude mice and histology.</p> <p>Results</p> <p>Compared with non-enhanced vector pGL3-basic-TK-hTERTp-EGFP, TK expressed by the enhanced vector significantly decreased NPC 5-8F and MCF-7 cell survival rates after ganciclovir (GCV) treatment (p < 0.001) and tumor progress in nude mice with NPC xenograft and treated with GCV, without obvious toxicity to mouse liver and kidney.</p> <p>Conclusion</p> <p>The enhanced TK expression vector driven by hTERTp with CMV enhancer has brighter clinical potentials in nasopharyngeal carcinoma therapy than the non-enhanced vector.</p

    Projected changes in seasonal and extreme summertime temperature and precipitation in India in response to COVID-19 recovery emissions scenarios

    Get PDF
    Funder: Cambridge STEAM InitiativeFunder: Centre for Environmental Data Analysis, Science and Technology Facilities CouncilFunder: Harvard Global Institute; doi: http://dx.doi.org/10.13039/100016486Abstract Fossil fuel and aerosol emissions have played important roles on climate over the Indian subcontinent over the last century. As the world transitions toward decarbonization in the next few decades, emissions pathways could have major impacts on India’s climate and people. Pathways for future emissions are highly uncertain, particularly at present as countries recover from COVID-19. This paper explores a multimodel ensemble of Earth system models leveraging potential global emissions pathways following COVID-19 and the consequences for India’s summertime (June–July–August–September) climate in the near- and long-term. We investigate specifically scenarios which envisage a fossil-based recovery, a strong renewable-based recovery and a moderate scenario in between the two. We find that near-term climate changes are dominated by natural climate variability, and thus likely independent of the emissions pathway. By 2050, pathway-induced spatial patterns in the seasonally-aggregated precipitation become clearer with a slight drying in the fossil-based scenario and wetting in the strong renewable scenario. Additionally, extreme temperature and precipitation events in India are expected to increase in magnitude and frequency regardless of the emissions scenario, though the spatial patterns of these changes as well as the extent of the change are pathway dependent. This study provides an important discussion on the impacts of emissions recover pathways following COVID-19 on India, a nation which is likely to be particularly susceptible to climate change over the coming decades.</jats:p

    Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

    Get PDF
    Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3Γ—10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Tracking echovirus eleven outbreaks in Guangdong, China

    Get PDF
    In April 2019, a suspect cluster of enterovirus cases was reported in a neonatology department in Guangdong, China, resulting in five deaths. We aimed to investigate the pathogen profiles in fatal cases, the circulation and transmission pattern of the viruses by combining metatranscriptomic, phylogenetic, and epidemiological analyses. Metatranscriptomic sequencing was used to characterize the enteroviruses. Clinical and environmental surveillance in the local population was performed to understand the prevalence and genetic diversity of the viruses in the local population. The possible source(s), evolution, transmission, and recombination of the viruses were investigated by incorporating genomes from the current outbreak, from local retrospective surveillance, and from public databases. Metatranscriptomic analysis identified Echovirus 11 (E11) in three fatal cases. Seroprevalence of neutralization antibody to E11 was 35 to 44 per cent in 3–15 age groups of general population, and the viruses were associated with various clinical symptoms. From the viral phylogeny, nosocomial transmissions were identified and all E11 2019 outbreak strains were closely related with E11 strains circulating in local population 2017–19. Frequent recombination occurred among the 2019 Guangdong E11 outbreak strains and various genotypes in enterovirus B species. This study provides an example of combining advanced genetic technology and epidemiological surveillance in pathogen diagnosis, source(s), and transmission tracing during an infectious disease outbreak. The result highlights the hidden E11 circulation and the risk of viral transmission and infection in the young age population in China. Frequent recombination between Guangdong-like strains and other enterovirus genotypes also implies the prevalence of these emerging E11 strains

    Urinary Bisphenol A and Type-2 Diabetes in U.S. Adults: Data from NHANES 2003-2008

    Get PDF
    Bisphenol A (BPA) is found in plastics and other consumer products; exposure may lead to insulin resistance and development of type-2 diabetes mellitus (T2DM) through over-activation of pancreatic Ξ²-cells. Previous studies using data from the National Health and Nutrition Examination Survey (NHANES) showed an inconsistent association between prevalence of self-reported T2DM and urinary BPA. We used a different diagnosis method of T2DM (hemoglobin A1c (HbA1c)) with a larger subset of NHANES.We analyzed data from 4,389 adult participants who were part of a sub-study of environmental phenol measurements in urine from three NHANES cycles from 2003 to 2008. T2DM was defined as having a HbA1c β‰₯6.5% or use of diabetes medication. The weighted prevalence of T2DM was 9.2%. Analysis of the total sample revealed that a two-fold increase in urinary BPA was associated with an odds ratio (OR) of 1.08 of T2DM (95% confidence interval (CI), 1.02 to 1.16), after controlling for potential confounders. However, when we examined each NHANES cycle individually, we only found a statistically significant association in the 2003/04 cycle (nβ€Š=β€Š1,364, ORβ€Š=β€Š1.23 (95% CI, 1.07 to 1.42) for each doubling in urinary BPA). We found no association in either the NHANES cycle from 2005/06 (nβ€Š=β€Š1,363, ORβ€Š=β€Š1.05 (95% CI, 0.94 to 1.18)); or 2007/08 (nβ€Š=β€Š1,662, ORβ€Š=β€Š1.06 (95% CI, 0.91 to 1.23)). Similar patterns of associations between BPA and continuous HbA1c were also observed.Although higher urinary BPA was associated with elevated HbA1c and T2DM in the pooled analysis, it was driven by data from only one NHANES cycle. Additional studies, especially of a longitudinal design with repeated BPA measurements, are needed to further elucidate the association between BPA and T2DM
    • …
    corecore