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Abstract
Fossil fuel and aerosol emissions have played important roles on climate over the Indian
subcontinent over the last century. As the world transitions toward decarbonization in the next few
decades, emissions pathways could have major impacts on India’s climate and people. Pathways for
future emissions are highly uncertain, particularly at present as countries recover from COVID-19.
This paper explores a multimodel ensemble of Earth system models leveraging potential global
emissions pathways following COVID-19 and the consequences for India’s summertime
(June–July–August–September) climate in the near- and long-term. We investigate specifically
scenarios which envisage a fossil-based recovery, a strong renewable-based recovery and a
moderate scenario in between the two. We find that near-term climate changes are dominated by
natural climate variability, and thus likely independent of the emissions pathway. By 2050,
pathway-induced spatial patterns in the seasonally-aggregated precipitation become clearer with a
slight drying in the fossil-based scenario and wetting in the strong renewable scenario.
Additionally, extreme temperature and precipitation events in India are expected to increase in
magnitude and frequency regardless of the emissions scenario, though the spatial patterns of these
changes as well as the extent of the change are pathway dependent. This study provides an
important discussion on the impacts of emissions recover pathways following COVID-19 on India,
a nation which is likely to be particularly susceptible to climate change over the coming decades.

1. Introduction

On 25 March 2020, the Indian government
announced a nationwide economic lockdown to
combat the spread of COVID-19 (Times of India
2020). The lockdown forced many coal factories
and industrial plants to close, while reducing trans-
portation in the country by up to 85%, according
to Apple mobility data (Apple Maps 2021). Dur-
ing the lockdown, the concentrations of PM2.5,
NOx, and other pollutants dropped steeply, allowing
researchers to observe how India’s present-day envir-
onment would react to more sustainable emission
levels (IQAir 2021). Although it has been shown that

emissions changes directly resulting from COVID-19
will have a negligible impact on global mean sur-
face temperature in the long run, the lockdown may
have accelerated market trends towards renewable
energy and increased global political support for
more sustainable policy solutions (United Nations
2020, Weber et al 2020). The question that arises
naturally as the world recovers from COVID-19 is
how countries will invest in various sectors (the elec-
tricity, transportation, industry and building sec-
tors, for example) going forward given the global
economic damage wrought in 2020 and what are
the consequent regional climate impacts from these
decisions.
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Changes in India’s summertime climate can be
attributed, in part, to industrialization across Asia
over the last half century. A 151.5% increase in Indian
population over the last 50 years has heightened the
energy demands of the nation’s developing economy
and consequently impacted air quality in the region
(Nagdeve 2007, Appannagari 2017, Karambelas et al
2018, World Bank 2019). The burning of coal,
solid waste, and commercial biomass have been the
primary anthropogenic drivers of India’s recent pol-
lution problems (Kandlikar andRamachandran 2000,
The World Bank 2019). To combat air quality issues
in the region, the Indian government has pursued
a number of policies geared towards sustainability,
though success so far has been mixed. Assuming a
linear reduction in the price for renewable energy,
India has the economic means to reduce its 2040 car-
bon footprint by 85% (Lu et al 2020). However, coal
accounted for 45% of the nation’s total energy con-
sumption in 2018, and coal demand is expected to
grow more in India than in any other country by
2024 (International Energy Agency 2019, Independ-
ent Statistics and Analysis 2020). This contrasts with
the government’s pledge to nearly triple its renewable
capacity by 2030 and the nation’s history of devel-
oping large scale renewable infrastructure (Gabbatiss
2021, Leonard 2021). Furthermore, in rural areas,
recent policies to stabilize the water table have forced
farmers to abide by strict harvest schedules, and, in
many cases, resort to burning crop waste instead of
disposing of it safely (Cusworth et al 2018, Singh
et al 2019). Increased coal and biomass burning have
dampened the positive effects of India’s solar and
wind infrastructure initiatives on both public health
and climate.

At a daily resolution, extreme weather events
can exacerbate the public health and socioeconomic
impacts of seasonal climate variability (Robine et al
2008). While long-term precipitation projections are
difficult to model accurately, it has been speculated
that continued fossil-fuel emissions will increase the
severity of future extremeprecipitation and temperat-
ure events (Schär et al 2016, Roxy et al 2017, Yaduvan-
shi et al 2021). One of the first extreme precipita-
tion events that started a national discourse within
India on the effects of climate change was the flood-
ing of Mumbai in July 2005, which received 40 inches
of rain in the span of 1 day. The frequency of such
intense events has only increased since, with particu-
larly devastating events in Kerala and Chennai within
the last few years. From 1950 to 2015, the number of
extreme rainfall events tripled, killing 69 000 people
and leaving 17 million more homeless (CRED 2017,
Mushal 2019). In addition, summer heat waves have
killed at least 6000 people since 2010, with temperat-
ures rising above 120 ◦F in the pre-monsoon season
(Murari et al 2015). There is a growing concern that
these intense heat waves will increase in duration and
frequency due in part to decreasing soil moisture and

clearer skies (Mishra et al 2014, Rohini et al 2016).
Additionally, some have posited the monsoon season
could extend further into September. Rising anthro-
pogenic emissions are known to be linked to each of
these meteorological phenomena and can therefore
have potentially devastating impacts on both seasonal
and daily climate trends (Mishra et al 2014, Mukher-
jee et al 2018, CMIP 2021).

Here, we analyze six models that have taken
part in the Coupled Model Intercomparison Project,
Phase 6 (CMIP6) CovidMIP project (Forster et al
2020, Lamboll et al 2020), to study the effects of
COVID-19 emissions recovery pathways on India’s
summertime climate. We leverage a multimodel
ensemble to account for the intermodel variability
present in temperature and precipitation projections
(Forster et al 2020, Climate Change Knowledge Portal
2021, Pandey et al 2021). Each of these models is run
for three future global recovery pathways following
the COVID-19 lockdown: fossil-fuel based, moder-
ate green, and strong green emission control pledges
(with details of each scenario included in table 1)
(Forster et al 2020). We compare each of these recov-
ery pathways to a low emissions baseline scenario
(SSP245) to evaluate prospects for seasonal and daily
climatic changes in India for the summer when both
major temperature andprecipitation events take place
(Riahi et al 2017).

This paper focuses on the impact of these various
climate recovery scenarios on precipitation and tem-
perature projections in the summermonsoon season.
We first analyze summertime aerosol optical depth
(AOD) as an integrative property of the air pollution
loading and precipitation projections across India in
the near-term (2020–2025) and the long-term (2045–
2040) to distinguish human-induced climate trends
from natural variability. We then compare the mag-
nitude and frequency of severe summertime tem-
perature and precipitation events across the mul-
timodel ensemble. Impacts of projected changes are
discussed in the context of India’s geospatial popula-
tion projections. Our study aims to thoroughly assess
the implications of realistic, policy-based emissions
changes on long-term summertime climate over the
Indian subcontinent in the context of both seasonally-
aggregated changes as well as short-term extreme
events.

2. Method

Our study utilizes sixmodels from theCovidMIPpro-
ject to understand the role of global emissions per-
turbations on Indian climate over the next 30 years
(there are a few other models in the CovidMIP
ensemble, but these have been excluded in the ana-
lysis presented here as theyweremissing either certain
scenarios or years in the Earth SystemGrid Federation
(ESGF; https://esgf-node.llnl.gov/search/cmip6/), a
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Table 1. Summary of the multimodel ensemble studied here.

Model
Resolution
(lon× lat)

# Baseline
members

# Fossil
members

# Modgreen
members

# Strgreen
members

ACCESS-ESM1-5 1.241◦ × 1.875◦ 30 10 10 10
CanESM5 2.813◦ × 2.813◦ 50 50 50 50
MPI-ESM1-2-LR 1.875◦ × 1.875◦ 10 10 10 10
MRI-ESM2-0 1.125◦ × 1.125◦ 6 6 6 6
NorESM2-LM 1.875◦ × 2.500◦ 10 10 10 10
UKESM1-0-LL 1.25◦ × 1.875◦ 17 12 15 10

data center for climate model output and observa-
tions). Each of these models simulates four different
global climate recovery scenarios from COVID-19,
which are based on individual nations’ commit-
ment to renewable energy (Forster et al 2020). Our
baseline scenario follows the so-called ‘middle-of-
the-road’ scenario that assumes historical emissions
policies continue into the future (SSP245, henceforth
referred to as the baseline scenario;O’Neill et al 2017).
The fossil-fuel scenario (COV-FOSSIL) assumes that
emissions will increase to 4.5% above baseline levels
by 2022, a recovery similar to that following the 2008–
2009 global recession. The moderate green stimu-
lus scenario (COV-MODGREEN) assumes a gradual
shift towards low-carbon technologies through a 35%
reduction in GHG emissions relative to the baseline
by 2030. The strong green stimulus scenario (COV-
STRGREEN) simulates a 50% reduction in GHG
emissions relative to the baseline by 2030, with the
end goal of reaching global net-zero carbon emissions
by 2050. Further details of all four of these scenarios
are provided in Forster et al (2020).

Due to the differing spatial resolutions present in
these models, we rescale and interpolate each model
(using a bilinear interpolation approach) to a stand-
ard 1.25◦ × 1.875◦ resolution. Climatic changes in
the near- (2020–2025) and long-term (2045–2050)
are calculated using the multimodel mean of sum-
mertime (June–July–August–September) simulation
outputs. Scenarios from each model are comprised
of multiple ensemble members (see table 1 for num-
bers specific to any given model), which represent
the slight variations in initial atmospheric conditions.
Whilst they may be generated via slight variations in
initial atmospheric conditions they represent a meas-
ure of the model internal variability. And the goal
here is to compare the effects of the emission scen-
arios to this internal variability. Having a sufficiently
large ensemble size for each model-scenario combin-
ation should allow for us to distinguish between the
emissions-driven responses and internal variability.
To avoid overweighting models with more ensemble
members, we take themean across all ensemblemem-
bers for each model prior to aggregating the models
together in figures 1–3.

Our initial analysis focuses on projected changes
in summertime (JJAS) AOD at 550 nm (AOD) and
precipitation over continental India at a monthly

resolution. We first compute the difference in AOD
between the multimodel average of each scenario
and the baseline scenario over the periods 2020–2025
and 2045–2050. Similar calculations are performed
also for precipitation to evaluate the sensitivity of
these quantities to projected emissions changes. To
evaluate how realistically the models can simulate
AOD and precipitation at a monthly resolution over
India, we compare the multimodel summertime
average and standard deviation for historical AOD
and precipitation levels to observations compiled
by the NASA Moderate Resolution Imaging Spec-
troradiometer and Global Precipitation Climatology
Centre, respectively (figures S1–S4 (available online
at stacks.iop.org/ERL/16/114025/mmedia)) (GPCC
2011, Moderate Resolution Imaging Spectrometer
2021).While there are discrepancies in themagnitude
of AOD and precipitation, particularly in southern
India for AOD and northern India for the variance in
precipitation, the spatial patterns are generally con-
sistent between the model means and standard devi-
ations and the observations.

Following the monthly aggregated analysis, we
then assess changes in the magnitude and frequency
of summertime extreme events in India in the long-
term. Using data at a daily temporal resolution,
we examine changes in extreme precipitation events
and daily peak temperature across the multimodel
ensemble. We have defined the threshold for an
extreme event at the model level (that is, a 95th per-
centile event for a model is computed across all indi-
vidual ensemble members of a given model). Dir-
ect human impacts from changing extreme events
are then evaluated in the context of expected pop-
ulation dynamics changes across India. To quantify
the population impacts of extreme events from the
different emission scenarios, we calculate the num-
ber of people affected by an extreme event on a daily
basis at each grid cell. We then sum the number of
people affected by a daily extreme event at each grid
cell over the summertime 2045–2050 period to yield
a metric in units of people-days (i.e. the number
of people affected by extreme events from 2045 to
2050 times the number of extreme event days in that
period). This number represents the total long-term
scenario-dependent impacts of COVID emissions
recovery. The population trends applied are driven
by the Shared Socioeconomic Pathways (SSP), which
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provide decadal projections of population changes
at a one-eighth degree resolution.33 These pathways
highlight climate vulnerabilities, impacts, and sus-
tainable developments under multiple scenarios. Our
study uses SSP2 as a baseline framework, which is
designed to simulate a world in which social, eco-
nomic, and political rhetoric do not shift markedly
from their historical trends. We acknowledge that
analysis should be extended to assess climate impacts
in other SSP scenarios in the future.

3. Results

3.1. Projected seasonally-aggregated summertime
air quality and precipitation changes
We start with an evaluation of how projected sum-
mertime Indian AOD at 550 nm differs between vari-
ous emissions pathways. The differences in summer
AOD between the three emissions pathways relative
to the SSP245 baseline provide a range of trajectories
for air quality in India in the future according to these
emissions trajectories, and are presented in figure 1.
In the near term, the multimodel difference in AOD
relative to the baseline in each of the three recovery
pathways is negative (implying a lower AOD relative
to that of in the SSP245 trajectory), specifically in the
Bengal region. That being said, themagnitude of these
changes is relatively weak compared to the differences
found in the longer term, suggesting that the various
recovery pathways will not have a marked near-term
impact on Indian AOD, consistent with the findings
in Jones et al (2021).

However, in the 2045–50 time frame, the fossil
recovery pathway indicates greater AOD values than
either of the green recovery pathways. While both
of the green stimuli projections indicate a robust
reduction in AOD relative to the baseline scenario
by 2045–2050, the COV-STRGREEN ensemble amp-
lifies this result across the Indian subcontinent.While
the deviations observed in the COV-FOSSIL scen-
ario are not statistically robust, it is notable that the
fossil recovery case predicts greater AOD relative to
the baseline scenario. We expect AOD to decrease
in the green stimuli cases, as is expected in a scen-
ario with reductions in fossil-based emissions. We
also observe that the magnitude of the multimodel
deviation from the baseline increases from the south-
west to the northeast portion of the Indian sub-
continent, with the greatest deviations taking place
in the eastern portion of the Indo-Gangetic Plain.
This result is consistent with the current AOD hot-
spots in India; because the Indo-Gangetic Plain con-
tains many of the nation’s largest cities and since
it is shielded by both the Himalayas and the Dec-
can Plateau, it creates a geographic funnel for air
pollutants.

It is expected that these varying concentrations
of air pollutants should also have climate impacts
(Sherman et al 2021). Figure 2 indicates changes in

seasonally-aggregated summertime precipitation in
India relative to the SSP245 baseline. In the near
term, we do not observe any consistent or dis-
cernible trends in summertime precipitation pro-
jections for the three recovery scenarios. While
the COV-MODGREEN scenario projects that there
will be more precipitation than the COV-FOSSIL
scenario, the COV-STRGREEN pathway shows on
average lower projected precipitation across India.
Because spatial precipitation changes associated with
COV-STRGREEN contradict the results from COV-
MODGREEN, we cannot identify a clear relation-
ship between summertime precipitation and the
levels of commitment to green technologies in the
near term. Therefore, it is likely that the dis-
crepancies present in the 2020–2025 period across
the multimodel ensemble are attributable to nat-
ural climate variability rather than anthropogenic
forcing.

In the longer term, the effects of each policy scen-
ario on summertime precipitation levels are more
apparent. The COV-FOSSIL scenario indicates less
precipitation in central India than the baseline, a con-
clusion that is supported by multiple robust points
in the region. In the COV-MODGREEN simula-
tion, this same conclusion is not seen with statist-
ical robustness, as this scenario projects roughly sim-
ilar precipitation levels to the baseline across the
Indian subcontinent. Higher rainfall levels relative
to the baseline are projected throughout contiguous
India in the COV-STRGREEN pathway, with robust
points found in the same region as the COV-FOSSIL
pathway. Thus, we conclude that in the long term,
more aggressive low-carbon policies will likely lead
to a higher Indian summertime precipitation than
would be experienced without these policies. We can
further analyze this result to infer the interconnec-
tion of aerosols and GHGs on seasonal precipita-
tion trends. The COV-FOSSIL pathway—which res-
ults in higher aerosol and GHG concentrations than
the baseline—projects less summertime precipitation
than the greener COV-STRGREEN pathway, which
results in lower aerosol andGHG concentrations than
the baseline. Increased GHGs raise the average sum-
mertime temperature in the COV-FOSSIL scenario,
which should increase water vapor in the atmosphere
and result in greater precipitation (e.g. Sherman et al
2021). However, the lower precipitation in the COV-
FOSSIL scenario relative to the baseline may show
that realistic potential changes in anthropogenic aer-
osol emissions might be a more significant forcing
agent on summertime precipitation in India relative
to realistic changes expected from GHG emissions by
2050. It is worth noting that there is less statistical
robustness stippling in figure 2 relative to figure 1,
which makes sense as AOD responds directly to
emissions changes, while precipitation changes are a
more secondary order effect in response to emissions
changes.
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Figure 1. The multimodel mean percent change in summertime (JJAS) AOD at 550 nm between (a) and (d) COV-FOSSIL, (b)
and (e) COV-MODGREEN and (c) and (f) COV-STRGREEN and the BASE scenario. The top row indicates summertime AOD
changes over the period 2020–2025, while the bottom row indicates the same for the period 2045–2050. Stippling denotes regions
of a statistically robust change, defined here as at least five of the six models agreeing on the direction of change.

Figure 2. The multimodel mean change in summertime (JJAS) precipitation between (a) and (d) COV-FOSSIL, (b) and (e)
COV-MODGREEN and (c) and (f) COV-STRGREEN and the BASE scenario. The top row indicates summertime precipitation
changes over the period 2020–2025, while the bottom row indicates the same for the period 2045–2050. Stippling denotes regions
of a statistically robust change, defined here as at least five of the six models agreeing on the direction of change.

3.2. Changing frequencies of extreme events
In addition to the seasonally-aggregated data, it is
important also to study changes in the statistics of the
precipitation data at a more granular (i.e. daily) level
in the various scenarios. Changes in the magnitude

of extreme temperature events have direct impacts
on many people in India. Temperature changes for
95th percentile extreme events (computed at the
model level and averaged across models) are indic-
ated in figure 3, panels a–c. By 2045–2050, all three
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Figure 3. (a)–(c) The multimodel mean difference in 95th percentile daily maximum summertime (JJAS) temperatures
(TASMAX; ˚C) between (a) COV-FOSSIL, (b) COV-MODGREEN and (c) COV-STRGREEEN over the period 2045–2050 and the
baseline scenario over the 2020–2025 period. Contour temperature levels at 35 ◦C, 40 ◦C and 45 ◦C for the multimodel mean
baseline scenario over the period 2020–2025 are indicated in panel (d). (e)–(g) The same as panels (a)–(c), but for precipitation
(P; mm). Contour precipitation levels at 100, 150 and 200 mm for the multimodel mean baseline scenario over the period
2020–2025 are indicated in panel (h). Stippling denotes regions of a statistically robust change, defined here as at least five of the
six models agreeing on the direction of change.

scenarios project a warming of 0.5 ◦C –1 ◦C in the
95th percentile daily temperature maximum relat-
ive to the 2020–2025 baseline scenario. This shows
that regardless of the emissions trajectory going for-
ward (i.e. whether we invest heavily in renewables
or not), India’s hottest summertime temperatures
will be greater in 2045–2050 than they are today.
However, the distribution and intensity of temper-
ature extremes across India are dependent upon cli-
mate policy. In the COV-FOSSIL pathway, extreme
temperatures rise by 0.8 ◦C–1 ◦C relative to the
baseline in all regions of India except for the north-
east portion of the Indo-Gangetic Plain. Conversely,
the COV-MODGREEN and COV-STRGREEN path-
ways exhibit the greatest warmings on the northern
border of the Indo-Gangetic Plain and theHimalayas.
The two green pathways also project a smaller average
increase in extreme temperatures across India than
the COV-FOSSIL scenario. The COV-MODGREEN
pathway shows only a 0.5 ◦C–0.8 ◦C warming in the
southwest regions of India, as there is a discernible
increase in 95th percentile daily maximum temper-
ature (relative to the baseline) from the southwest to
the northeast of India. The results from the COV-
STRGREEN are less clear, as this model projects a lar-
ger increase in extreme temperatures on the southw-
est coast as compared with the north-central portion
of the country.

These extreme temperature changes can be
explained in part by comparing them to the
deviations in AOD shown in figure 1. AOD
concentrations decrease from the southwest to the

northeast, and we observe that same pattern for
extreme temperature in theCOV-MODGREENpath-
way. Decreased AOD in the green recovery pathways
has likely played an important role in the hotter
extreme temperature events. This suggests that, at
the daily resolution, the reduction in aerosol emis-
sions plays a major role in masking part of the overall
reduced GHG trend relative to baseline. The COV-
STRGREEN pathway does not indicate as robust a
trend in extreme temperatures over this region, which
is consistent with the logic discussed above because
emissions of both GHGs and aerosols decrease in
COV-STRGREEN relative to COV-MODGREEN.
This suggests that, in amultimodel average of aggress-
ive green pathways, aerosol cooling may roughly bal-
ance GHG warming, and predictions of long-term
projections of the spatial distribution of extreme
summertime temperature events may be more
difficult.

Similarly, changes in the magnitude of extreme
precipitation events could also have major con-
sequences for the livelihoods of many people in
India. These changes are shown in figure 3, pan-
els d–f. We note a general increase in 95th per-
centile precipitation over the Indo-Gangetic region
for all three scenarios. The spatial patterns vary
further south both along the coast and inland.
For the COV-MODGREEN and COV-STRGREEN
simulations, we observe a sustained increase in 95th
percentile precipitation of approximately 60 mm
for COV-MODGREEN and 40–60 mm for COV-
STRGREEN. COV-FOSSIL presents an increase in
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Figure 4. Boxplots of the number of people-days affected by 95th percentile baseline scenario 2020–2025 summertime (JJAS)
extreme events for COV-FOSSIL, COV-MODGREEN and COV-STRGREEN in the period 2045–2050 summertime over
continental India. The boxplots illustrate the distribution of people-days in all individual ensemble members from all of the
models studied. Panel (a) indicates the number of people-days affected by 95th percentile temperature extremes and panel (b)
indicates 95th percentile precipitation events. Dots in the figures represent outliers, which in the case of panel (a) all correspond
to individual ensemble members from MRI-ESM-2-0. Values have been normalized by dividing all boxplots by the mean
people-days affected by 95th percentile temperatures in the COV-FOSSIL scenario (i.e. dividing by the mean of the COV-FOSSIL
data from panel (a)).

95th percentile precipitation as well, though it is con-
fined to a smaller area and weaker in magnitude,
peaking at an increase of about 40 mm. Notably,
there is a small area in central India that exhibits a
slight decrease. However this is not corroborated by
data from other surrounding areas, and should prob-
ably not be treated as robust. Lastly, we observe that
for all simulations, there seems to be no apparent
change in extreme precipitation in the south or
northwest.

3.3. Impacts on population-dense regions
Changes in the frequency of extreme events will
also play an important role on the potential human
impacts of future climatic changes in India. Changes
in the number of people-days affected by 95th
percentile temperature extremes are indicated in
figure 4(a). To do this, we multiplied the num-
ber of days exceeding the threshold extreme value
at each grid cell by the corresponding population
value. We then aggregated over all of India to

7
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obtain a single value in units of people-days for
each ensemble member of each model. The impacts
of extreme temperature have clear responses across
the three scenarios, ordered, as expected, accord-
ing to the amount of fossil fuels emitted. COV-
FOSSIL has the largest increase; there are 11.8%more
people-days affected by extreme temperatures in the
median COV-FOSSIL scenario relative to the median
COV-MODGREEN scenario and 16.1% more relat-
ive to COV-STRGREEN. These results are consist-
ent with expectations that the severity and impact
of extreme temperature events are likely to coincide
with greater GHG emissions. That is to say, in the
least sustainable pathway (COV-FOSSIL), not only
will the magnitude of extreme temperature events
increase (figure 3(a)), but also the number of people-
days impacted by these extreme events will increase
as well.

While the models in aggregate confirm this hypo-
thesis, natural variability in population and extreme
temperature projections across India are expected to
play an additionally important role. The interquart-
ile ranges shown in figure 4(a) indicate that there is
overlap in the extreme temperature impacts for the
different scenarios, suggesting that natural variability
can allow for summers in a renewably-driven path-
way that are just as hot as summers in a fossil-driven
pathway. However, while it is important to note the
significance of natural variability in extreme temper-
ature projections, this does not detract from the clear
discernible trend of increased people-days affected
by extreme temperatures as we move from a greener
to a more fossil-fuel oriented COVID-19 recovery
plan.

Impacts from extreme precipitation events are
indicated in figure 4(b). It is important to note
that people in India are more exposed to extreme
precipitation events relative to extreme temperature
events, as can be seen by the number of people-days
affected in each scenario. This is consistent with the
fact that the most populous regions in India are along
the coastline and the Indo-Gangetic Plain. Unlike
extreme temperature events, there does not appear to
be a clear relationship between scenario and people-
days affected. The interquartile ranges for all three
scenarios almost completely overlap and the bot-
tom quartiles are nearly identical. Additionally, the
median for the COV-MODGREEN scenario is lower
than for the other two scenarios, making it difficult
to distill a relationship between green policy and the
impacts of extreme precipitation events.

These extreme precipitation results are also con-
sistent with the data presented in figure 3, panels d–f.
All three scenarios predict an increase in the mag-
nitude of extreme precipitation events primarily over
the east and south. These regions host some of most
densely populated environments in all of India, and
this is especially the case for the Indo-Gangetic region.
As such, the slight variances in other regions do not

have a large effect on the number of people-days
due to the low number of people impacted. Given
the relatively uniform projected change in the mag-
nitude of extreme precipitation events, regardless
of scenario, it follows that the human impacts of
these events should also be experienced relatively
uniformly.

4. Discussions and conclusions

The main purpose of this study was to under-
stand potential ramifications of COVID-19 motiv-
ated emissions changes on summer-aggregated and
daily extreme climate in India. We leveraged output
from the CovidMIP multimodel ensembles running
a set of four emissions recovery trajectories follow-
ing COVID-19. We focused specifically on two peri-
ods, one representing the near future (2020–2025)
and one representing the long-term (2045–2050), to
evaluate how climatic changes will affect population-
dense regions under various recovery pathways.

Our study expands on prior research through a
multimodel climate analysis of four scenarios, each
with several ensemblemembers. By analyzing geospa-
tial multimodel projections at the seasonal and daily
resolution, we assess potential summertime climatic
changes across the Indian subcontinent over the com-
ing decades. We found that fossil fuel based recovery
pathways lead to higher summertime AOD concen-
trations in the long term, while greener scenarios lead
to lower AOD concentrations in the long term. This
is consistent with the rise in fossil fuel combustion,
agricultural waste burning and non-renewable trans-
portation prevalent with a fossil-fuel driven recovery
pathway. The greener scenarios may actually drive a
positive feedback loop where the solar PV capacity
factor improves with reduced air pollution, incentiv-
izing further investment in renewables which should
further reduce AOD. Precipitation projections are
inherently noisier than projections of AOD, though
the results suggest that in the long-term, seasonally-
aggregated summertime precipitation may, on aver-
age, increase slightly across India increase in greener
scenarios relative to fossil fuel focused policies. This
suggests that realistic changes in emissions of aero-
sols and its precursors will likely play a more dom-
inant role on precipitation over India in the coming
decades relative to the changes expected for green-
house gases (because relative changes in GHG emis-
sions are expected to be smaller than that of aerosol
emissions). The magnitude of these trends is larger
in the long-term relative to the near-term, highlight-
ing how the implementation of sustainable policies
today will be more impactful in the future. The full
CMIP6 ensemble under a range of future scenarios
(SSP126, SSP245, SSP585) shows large uncertainty,
but little differences between mean summertime pre-
cipitation projected by the three SSP scenarios before
2060 (Almazroui et al 2021). This result is generally
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consistent with the changes found here, which are
largely masked by noise. It is, however, of note that
the most fossil-intensive scenario (SSP585) yielded
higher mean summertime precipitation in the far-
term (2080–2099) (Almazroui et al 2021).

At a daily resolution, we conclude that maximum
summertime temperatures will generally be higher in
fossil-fuel recovery scenarios than for greener altern-
atives. However, this result varies spatially; extreme
temperature events in less sustainable pathways are
more severe in southwest India, and less severe fur-
ther north. The extreme temperature changes in the
north correlate with the AOD changes in the vari-
ous scenarios, suggesting that perturbations to the
aerosol forcing could play a major role in future
extreme temperature events in that region. We also
observe that extreme precipitation events are more
severe in greener recovery scenarios compared to
their fossil recovery counterparts, specifically in the
northeast and central regions of India. Finally, by
overlaying Indian population data onto our spatial
extreme temperature and precipitation projections,
we observe that more people-days are affected by
heat waves in fossil recovery pathways, compared to
greener alternatives. Additionally, extreme precipita-
tion events, when averaged across models and scen-
arios, affect more than triple the amount of people-
days than extreme temperature events. These results
make sense in the context of India’s volatile monsoon
season that has been known to bring short spurts of
torrential downpours throughout the summer.

This projected increase in the intensity of future
extreme precipitation events is consistent with the
results of prior studies. While there have histor-
ically been several metrics used to define extreme
events, both global CMIP5 (Mukherjee et al 2018)
and regional (Woo et al 2019, Rai et al 2020, Maha-
rana et al 2021, Shahi et al 2021) models project
an increase in both the frequency and intensity of
extreme events over India. Comparisons between dif-
ferent carbon emissions pathways used by CMIP,
RCP4.5 (lower carbon forcing) and RCP8.5 (higher
carbon forcing) project a similar range for the fre-
quency of extreme events under both of these scen-
arios (Woo et al 2019). This is consistent with the res-
ults presented here, which finds that, because of high
variance in model projections, the number people-
days affected by extreme precipitation predicted over-
laps under the emissions scenarios studied.

We note here a few caveats from this study which
should be considered for future analysis. First, due
to the coarse spatial resolution of GCMs, there may
be issues in simulations of summer monsoon pre-
cipitation, particularly the frequency and magnitude
of extreme events, given India’s complex orography
(Prell and Kutzbach 1992). We find, however, gen-
eral consistency in the spatial patterns of precipitation
between multimodel mean and observations (figures
S1 and S3) over the historical period as well as the

variability (figures S2 and S4). Second, all scenarios
studied here follow emissions trajectories branch-
ing from SSP245, a middle-of-the-road CMIP6 emis-
sions pathways. Future work should explore sim-
ilar COVID-19 recovery scenarios for the worst-case
SSP scenarios to understand the reasonable upper
limit of human-induced climate change on the Indian
monsoon. Third, some chemistry-climate feedbacks
remain heavily unconstrained in GCMs due to our
limited understanding of indirect aerosol effects. For
example, while past studies have found the precipita-
tion response to sulfate aerosol emissions to be per-
sistent across models (Kim et al 2007, Shawki et al
2018), impacts from black carbon are more difficult
to evaluate (Xie et al 2020, Sherman et al 2021). The
representation of cloud microphysical processes rep-
resents a well-recognized limitation of current GCMs
(Wilcox et al 2015), and is likely one of themain com-
ponents responsible for model-dependent precipita-
tion responses to BC emissions perturbations (Sher-
man et al 2021). Fourth, intermodel bias could affect
the results presented here. We have briefly studied
this in figure S5 in the SI, which shows precipita-
tion and AOD aggregated over India for each of the
models investigated. This shows that somemodels are
biased relative to the rest of the ensemble (particu-
larly, precipitation in CanESM5 aggregated over India
is roughly 50% lower relative to the rest of the mul-
timodel ensemble), though the models are generally
consistent. As we mainly studied projected changes
relative to a baseline, model bias should generally be
accounted for in the analysis presented in our paper,
though future work could be implemented to expand
on this further.

The long-term economic recovery from COVID-
19 can prospectively take many forms, and these
decisions can have important implications for future
climate change. These results should be valued as
important considerations in our future emissions tra-
jectory globally as well as regionally in India. The pro-
jected changes we find in the summertime temperat-
ure and precipitation extremes can be studied further
and could have broad consequences for India from
perspectives of both agriculture and human health.
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