32 research outputs found

    Natural and Induced Mitochondrial Phosphate Carrier Loss: DIFFERENTIAL DEPENDENCE OF MITOCHONDRIAL METABOLISM AND DYNAMICS AND CELL SURVIVAL ON THE EXTENT OF DEPLETION.

    Get PDF
    The relevance of mitochondrial phosphate carrier (PiC), encoded by SLC25A3, in bioenergetics is well accepted. However, little is known about the mechanisms mediating the cellular impairments induced by pathological SLC25A3 variants. To this end, we investigated the pathogenicity of a novel compound heterozygous mutation in SLC25A3 First, each variant was modeled in yeast, revealing that substituting GSSAS for QIP within the fifth matrix loop is incompatible with survival on non-fermentable substrate, whereas the L200W variant is functionally neutral. Next, using skin fibroblasts from an individual expressing these variants and HeLa cells with varying degrees of PiC depletion, PiC loss of ∼60% was still compatible with uncompromised maximal oxidative phosphorylation (oxphos), whereas lower maximal oxphos was evident at ∼85% PiC depletion. Furthermore, intact mutant fibroblasts displayed suppressed mitochondrial bioenergetics consistent with a lower substrate availability rather than phosphate limitation. This was accompanied by slowed proliferation in glucose-replete medium; however, proliferation ceased when only mitochondrial substrate was provided. Both mutant fibroblasts and HeLa cells with 60% PiC loss showed a less interconnected mitochondrial network and a mitochondrial fusion defect that is not explained by altered abundance of OPA1 or MFN1/2 or relative amount of different OPA1 forms. Altogether these results indicate that PiC depletion may need to be profound (\u3e85%) to substantially affect maximal oxphos and that pathogenesis associated with PiC depletion or loss of function may be independent of phosphate limitation when ATP requirements are not high

    Efeitos da administração a longo prazo de dietas com diferentes teores de sódio sobre a função renal de ratos hipertensos

    Get PDF
    A alta ingestão de sódio contribui significativamente para o desenvolvimento da hipertensão e suas complicações. Dentre estas, a doença renal crônica. Entretanto, os mecanismos moleculares responsáveis pelos danos renais e pela renoproteção produzidos por dietas de alto e baixo sal, respectivamente, são pouco compreendidos. Objetivo: Investigar os efeitos a longo prazo de dietas com diferentes teores de cloreto de sódio sobre a função renal de ratos espontaneamente hipertensos (SHR) focando nos mecanismos moleculares envolvidos no manejo renal de albumina e componentes do sistema renina angiotensina renal (SRA). Métodos: ratos SHR machos recém-desmamados (4 semamas) foram alimentados durante 6 meses com dietas diferindo apenas no teor de NaCl: dieta padrão de sal (NS: 0.3 %), dieta de baixo sal (LS: 0.03%) e dieta de alto teor de sal ( HS: 3%). Foram realizadas análises de função e morfologia renal, avaliação da expressão de componentes-chave envolvidos no manejo renal de albumina, incluindo as proteínas da slit membrane (nefrina e podocina) e do aparato endocítico do túbulo proximal (megalina e cubilina). Além disso, a expressão ea atividade dos componentes do RAS (enzima conversora de angiotensina ACE, ACE2, AT1, AT2 e Mas) também foram examinados. Resultados: HS agravou a hipertensão nos ratos SHR, provocou hipertrofia glomerular, diminuição da expressão renal de nefrina e ECA2, levou à perda da integridade morfológica dos processos podais e ao aumento da proteinúria caracterizado pela perda de albumina e proteínas de alto peso molecular. Por outro lado, a hipertensão grave foi atenuada e disfunção renal foi prevenida pela dieta LS, já que, a proteinúria foi muito menor nestes animais quando comparados aos SHR NS. Tais achados foram associados com uma diminuição da razão de proteína e de atividade das enzimas ECA/ECA2 nos rins e aumento da expressão renal de cubilina. Conclusão: Portanto, os resultados sugerem que a dieta a baixa ingestão de sódio atenua a progressão da hipertensão em ratos SHR e preserva a função renal. Os mecanismo que parcialmente podem explicar estes resultados incluem a modulação intra-renal do balanço ECA/ECA2 e o aumento da expressão renal de cubilina. Contudo, a alta ingestão de sódio agrava a lesão renal hipertensiva e reduz a expressão de nefrina, um componente chave slit diaphragm

    Health Care for Mitochondrial Disorders in Canada: A Survey of Physicians

    Get PDF
    Background: An improved understanding of diagnostic and treatment practices for patients with rare primary mitochondrial disorders can support benchmarking against guidelines and establish priorities for evaluative research. We aimed to describe physician care for patients with mitochondrial diseases in Canada, including variation in care. Methods: We conducted a cross-sectional survey of Canadian physicians involved in the diagnosis and/or ongoing care of patients with mitochondrial diseases. We used snowball sampling to identify potentially eligible participants, who were contacted by mail up to five times and invited to complete a questionnaire by mail or internet. The questionnaire addressed: personal experience in providing care for mitochondrial disorders; diagnostic and treatment practices; challenges in accessing tests or treatments; and views regarding research priorities. Results: We received 58 survey responses (52% response rate). Most respondents (83%) reported spending 20% or less of their clinical practice time caring for patients with mitochondrial disorders. We identified important variation in diagnostic care, although assessments frequently reported as diagnostically helpful (e.g., brain magnetic resonance imaging, MRI/MR spectroscopy) were also recommended in published guidelines. Approximately half (49%) of participants would recommend mitochondrial cocktails for all or most patients, but we identified variation in responses regarding specific vitamins and cofactors. A majority of physicians recommended studies on the development of effective therapies as the top research priority. Conclusions: While Canadian physicians\u27 views about diagnostic care and disease management are aligned with published recommendations, important variations in care reflect persistent areas of uncertainty and a need for empirical evidence to support and update standard protocols

    The mitochondrial phosphate carrier: Role in oxidative metabolism, calcium handling and mitochondrial disease

    Get PDF
    The mitochondrial phosphate carrier (PiC) is a mitochondrial solute carrier protein, which is encoded by SLC25A3 in humans. PiC delivers phosphate, a key substrate of oxidative phosphorylation, across the inner mitochondrial membrane. This transport activity is also relevant for allowing effective mitochondrial calcium handling. Furthermore, PiC has also been described to affect cell survival mechanisms via interactions with cyclophilin D and the viral mitochondrial-localized inhibitor of apoptosis (vMIA). The significance of PiC has been supported by the recent discovery of a fatal human condition associated with PiC mutations. Here, we present first the early studies that lead to the discovery and molecular characterization of the PiC, then discuss the very recently developed mouse models for PiC and pathological mutations in the human SLC25A3 gene. © 2015

    The role of Sis1 in the maintenance of the [RNQ(+)] prion

    No full text
    Yeast prions are inherited through proteins that exist in alternate, self-perpetuating conformational states. The mechanisms by which these states arise and are maintained are still poorly defined. Here we demonstrate for the first time that Sis1, a member of the Hsp40 chaperone family, plays a critical role in the maintenance of a prion. The prion [RNQ(+)] is formed by Rnq1, which is present in the same physical complex as Sis1, but only when Rnq1 is in the prion state. The G/F domain of Sis1 is dispensable for rapid growth on rich medium, but is required for [RNQ(+)] maintenance, distinguishing essential regions of Sis1 from those needed for prion interaction. A specific Sis1 deletion mutant altered the physical aggregation pattern of Rnq1 without curing the prion. This variant state propagated in a heritable fashion after wild-type Sis1 function was restored, indicating that multiple physical states are compatible with prion maintenance and that changes in chaperone activity can create prion variants. Using a prion chimera we demonstrate that the prion-determinant domain of Rnq1 is genetically sufficient for control by Sis1

    Predicting the pathogenicity of novel variants in mitochondrial tRNA with MitoTIP.

    No full text
    Novel or rare variants in mitochondrial tRNA sequences may be observed after mitochondrial DNA analysis. Determining whether these variants are pathogenic is critical, but confirmation of the effect of a variant on mitochondrial function can be challenging. We have used available databases of benign and pathogenic variants, alignment between diverse tRNAs, structural information and comparative genomics to predict the impact of all possible single-base variants and deletions. The Mitochondrial tRNA Informatics Predictor (MitoTIP) is available through MITOMAP at www.mitomap.org. The source code for MitoTIP is available at www.github.com/sonneysa/MitoTIP

    Novel recessive mutations in COQ4 cause severe infantile cardiomyopathy and encephalopathy associated with CoQ10 deficiency

    No full text
    Coenzyme Q10 (CoQ10) or ubiquinone is one of the two electron carriers in the mitochondrial respiratory chain which has an essential role in the process of oxidative phosphorylation. Defects in CoQ10 synthesis are usually associated with the impaired function of CoQ10–dependent complexes I, II and III. The recessively transmitted CoQ10 deficiency has been associated with a number of phenotypically and genetically heterogeneous groups of disorders manifesting at variable age of onset. The infantile, multisystemic presentation is usually caused by mutations in genes directly involved in CoQ10 biosynthesis. To date, mutations in COQ1 (PDSS1 and PDSS2), COQ2, COQ4, COQ6, COQ7, COQ8A/ADCK3, COQ8B/ADCK4, and COQ9 genes have been identified in patients with primary form of CoQ10 deficiency. Here we report novel mutations in the COQ4 gene, which were identified in an infant with profound mitochondrial disease presenting with perinatal seizures, hypertrophic cardiomyopathy and severe muscle CoQ10 deficiency
    corecore