89 research outputs found

    Effect of animal fats on the physical properties of palm fat

    Get PDF
    Palm fat is one of the most commonly used fats in food industry. The main role of palm fat is to develop the desired texture of food products. Fat blends were developed to find the most appropriate mixture fitting the technological needs. In our work palm mid fraction (PMF) was mixed with anhydrous milk fat (AMF), goose fat (G), and lard (L) in a 1:1 ratio. Anhydrous milk fat represents fat consisting of a wide range of fatty acids. Goose fat is a soft, easily melting fat, and lard is characterized as animal fat with wide melting temperature interval. The measurements aimed to establish the miscibility of the fats and the effect of animal fats on the melting-solidification profile of palm mid fraction. SFC vs temperature curves, Differential Scanning Calorimetry (DSC) melting thermograms describe the melting profile of the samples. Isotherm crystallization by SFC vs time curves and DSC cooling thermograms were measured to characterize the solidification of pure fats and the blends. Since the SFC curves did not show crosspoints we concluded that fats blended in a 1:1 ratio were miscible. Anhydrous milk fat strongly modified the properties of palm mid fraction, the blend became similar to anhydrous milk fat. Goose fat had no strong modification effect on palm mid fraction and could be considered as a softening agent. The effect of lard was complex: melting and solidification behaviour of the blend differed from the characteristics of both parent fats

    Analgesic and Anti-Inflammatory Effects of the Novel Semicarbazide-Sensitive Amine-Oxidase Inhibitor SzV-1287 in Chronic Arthritis Models of the Mouse.

    Get PDF
    Semicarbazide-sensitive amine oxidase (SSAO) catalyses oxidative deamination of primary amines. Since there is no data about its function in pain and arthritis mechanisms, we investigated the effects of our novel SSAO inhibitor SzV-1287 in chronic mouse models of joint inflammation. Effects of SzV-1287 (20 mg/kg i.p./day) were investigated in the K/BxN serum-transfer and complete Freund's adjuvant (CFA)-evoked active immunization models compared to the reference SSAO inhibitor LJP-1207. Mechanonociception was assessed by aesthesiometry, oedema by plethysmometry, clinical severity by scoring, joint function by grid test, myeloperoxidase activity by luminescence, vascular leakage by fluorescence in vivo imaging, histopathological changes by semiquantitative evaluation, and cytokines by Luminex assay. SzV-1287 significantly inhibited hyperalgesia and oedema in both models. Plasma leakage and keratinocyte chemoattractant production in the tibiotarsal joint, but not myeloperoxidase activity was significantly reduced by SzV-1287 in K/BxN-arthritis. SzV-1287 did not influence vascular and cellular mechanisms in CFA-arthritis, but significantly decreased histopathological alterations. There was no difference in the anti-hyperalgesic and anti-inflammatory actions of SzV-1287 and LJP-1207, but only SzV-1287 decreased CFA-induced tissue damage. Unlike SzV-1287, LJP-1207 induced cartilage destruction, which was confirmed in vitro. SzV-1287 exerts potent analgesic and anti-inflammatory actions in chronic arthritis models of distinct mechanisms, without inducing cartilage damage

    Fast Homeostatic Plasticity of Inhibition via Activity-Dependent Vesicular Filling

    Get PDF
    Synaptic activity in the central nervous system undergoes rapid state-dependent changes, requiring constant adaptation of the homeostasis between excitation and inhibition. The underlying mechanisms are, however, largely unclear. Chronic changes in network activity result in enhanced production of the inhibitory transmitter GABA, indicating that presynaptic GABA content is a variable parameter for homeostatic plasticity. Here we tested whether such changes in inhibitory transmitter content do also occur at the fast time scale required to ensure inhibition-excitation-homeostasis in dynamic cortical networks. We found that intense stimulation of afferent fibers in the CA1 region of mouse hippocampal slices yielded a rapid and lasting increase in quantal size of miniature inhibitory postsynaptic currents. This potentiation was mediated by the uptake of GABA and glutamate into presynaptic endings of inhibitory interneurons (the latter serving as precursor for the synthesis of GABA). Thus, enhanced release of inhibitory and excitatory transmitters from active networks leads to enhanced presynaptic GABA content. Thereby, inhibitory efficacy follows local neuronal activity, constituting a negative feedback loop and providing a mechanism for rapid homeostatic scaling in cortical circuits

    Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    Get PDF
    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function—it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.American Cancer Society (Robbie Sue Mudd Kidney Cancer Research Scholar Grant RSG-13-396-01-RMC)National Institutes of Health (U.S.) (GM094303)National Institutes of Health (U.S.) (GM081399)American Cancer Society. New England Division (Ellison Foundation Postdoctoral Fellowship)American Cancer Society (Postdoctoral Fellowship PF-13-319-01-RMC)National Institutes of Health (U.S.) (Pre-doctoral Training Grant T32GM007287

    Colorful Niches of Phytoplankton Shaped by the Spatial Connectivity in a Large River Ecosystem: A Riverscape Perspective

    Get PDF
    Large rivers represent a significant component of inland waters and are considered sentinels and integrators of terrestrial and atmospheric processes. They represent hotspots for the transport and processing of organic and inorganic material from the surrounding landscape, which ultimately impacts the bio-optical properties and food webs of the rivers. In large rivers, hydraulic connectivity operates as a major forcing variable to structure the functioning of the riverscape, and–despite increasing interest in large-river studies–riverscape structural properties, such as the underwater spectral regime, and their impact on autotrophic ecological processes remain poorly studied. Here we used the St. Lawrence River to identify the mechanisms structuring the underwater spectral environment and their consequences on pico- and nanophytoplankton communities, which are good biological tracers of environmental changes. Our results, obtained from a 450 km sampling transect, demonstrate that tributaries exert a profound impact on the receiving river’s photosynthetic potential. This occurs mainly through injection of chromophoric dissolved organic matter (CDOM) and non-algal material (tripton). CDOM and tripton in the water column selectively absorbed wavelengths in a gradient from blue to red, and the resulting underwater light climate was in turn a strong driver of the phytoplankton community structure (prokaryote/eukaryote relative and absolute abundances) at scales of many kilometers from the tributary confluence. Our results conclusively demonstrate the proximal impact of watershed properties on underwater spectral composition in a highly dynamic river environment characterized by unique structuring properties such as high directional connectivity, numerous sources and forms of carbon, and a rapidly varying hydrodynamic regime. We surmise that the underwater spectral composition represents a key integrating and structural property of large, heterogeneous river ecosystems and a promising tool to study autotrophic functional properties. It confirms the usefulness of using the riverscape approach to study large-river ecosystems and initiate comparison along latitudinal gradients

    Calpain Cleavage of Brain Glutamic Acid Decarboxylase 65 Is Pathological and Impairs GABA Neurotransmission

    Get PDF
    Previously, we have shown that the GABA synthesizing enzyme, L-glutamic acid decarboxylase 65 (GAD65) is cleaved to form its truncated form (tGAD65) which is 2–3 times more active than the full length form (fGAD65). The enzyme responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient physiological stimulus or upon a sustained pathological insult. However, the precise role of calpain cleavage of fGAD65 is poorly understood. In this communication, we examined the cleavage of fGAD65 under diverse pathological conditions including rats under ischemia/reperfusion insult as well as rat brain synaptosomes and primary neuronal cultures subjected to excessive stimulation with high concentration of KCl. We have shown that the formation of tGAD65 progressively increases with increasing stimulus concentration both in rat brain synaptosomes and primary rat embryo cultures. More importantly, direct cleavage of synaptic vesicle - associated fGAD65 by calpain was demonstrated and the resulting tGAD65 bearing the active site of the enzyme was detached from the synaptic vesicles. Vesicular GABA transport of the newly synthesized GABA was found to be reduced in calpain treated SVs. Furthermore, we also observed that the levels of tGAD65 in the focal cerebral ischemic rat brain tissue increased corresponding to the elevation of local glutamate as indicated by microdialysis. Moreover, the levels of tGAD65 was also proportional to the degree of cell death when the primary neuronal cultures were exposed to high KCl. Based on these observations, we conclude that calpain-mediated cleavage of fGAD65 is pathological, presumably due to decrease in the activity of synaptic vesicle - associated fGAD65 resulting in a decrease in the GABA synthesis - packaging coupling process leading to reduced GABA neurotransmission

    Role of PACAP and VIP Signalling in Regulation of Chondrogenesis and Osteogenesis

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are multifunctional proteins that can regulate diverse physiological processes. These are also regarded as neurotrophic and anti-inflammatory substances in the CNS, and PACAP is reported to prevent harmful effects of oxidative stress. In the last decade more and more data accumulated on the similar function of PACAP in various tissues, but its cartilage- and bone-related presence and functions have not been widely investigated yet. In this summary we plan to verify the presence and function of PACAP and VIP signalling tool kit during cartilage differentiation and bone formation. We give evidence about the protective function of PACAP in cartilage regeneration with oxidative or mechanically stress and also with the modulation of PACAP signalling in vitro in osteogenic cells. Our observations imply the therapeutic perspective that PACAP might be applicable as a natural agent exerting protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage

    Targeting cells with single vectors using multiple-feature Boolean logic

    Get PDF
    Precisely defining the roles of specific cell types is an intriguing frontier in the study of intact biological systems and has stimulated the rapid development of genetically encoded tools for observation and control. However, targeting these tools with adequate specificity remains challenging: most cell types are best defined by the intersection of two or more features such as active promoter elements, location and connectivity. Here we have combined engineered introns with specific recombinases to achieve expression of genetically encoded tools that is conditional upon multiple cell-type features, using Boolean logical operations all governed by a single versatile vector. We used this approach to target intersectionally specified populations of inhibitory interneurons in mammalian hippocampus and neurons of the ventral tegmental area defined by both genetic and wiring properties. This flexible and modular approach may expand the application of genetically encoded interventional and observational tools for intact-systems biology
    corecore