20 research outputs found

    Believing emotions are uncontrollable is linked to eating disorder psychopathology via suppression and reappraisal

    Get PDF
    Objective Research suggests that beliefs about emotional controllability influence the use of emotion regulation strategies, which in turn impact psychological health and illness. However, no research has yet investigated whether emotional controllability is linked to eating psychopathology. The current study investigates whether these concepts are related, as individuals with eating disorders have problems with emotion regulation. Method We collected self-report data from 718 participants from a community sample using validated questionnaires, and ran mediational analyses to assess the relationship between emotional controllability and eating psychopathology, via reappraisal and suppression, two emotion regulation strategies. Results Our mediational analyses suggest that believing emotions to be uncontrollable relates to high levels of suppression (β = −.08), low levels of reappraisal (β = .19) and poorer eating disorder psychopathology (β = −.11). Reappraisal and suppression were found to partially mediate the relationship between emotional controllability and eating psychopathology. Discussion The current study has demonstrated relationships that support investigations relating emotional controllability, emotion regulation and psychological health. This research has potential implications for developing interventions to target beliefs about emotions in order to help improve emotion regulation skills and eating psychopathology

    Specification of a foxj1-dependent lineage in the forebrain is required for embryonic-to-postnatal transition of neurogenesis in the olfactory bulb

    Get PDF
    Establishment of a neural stem cell niche in the postnatal subependymal zone (SEZ) and the rostral migratory stream (RMS) is required for postnatal and adult neurogenesis in the olfactory bulbs (OB). We report the discovery of a cellular lineage in the SEZ-RMS-OB continuum, the specification of which is dependent on the expression of the forkhead transcription factor Foxj1 in mice. Spatially- and temporally- restricted Foxj1+ neuronal progenitors emerge during embryonic periods, surge during perinatal development, and are active only for the first few postnatal weeks. We show that the development of the unique Foxj1-derived lineage is dependent on Foxj1 expression, and is required for overall postnatal neurogenesis in the OB. Strikingly, the production of neurons from Foxj1+ progenitors significantly declines after the early postnatal weeks, but Foxj1-derived neurons in the OB persist during adult periods. Our study for the first time identifies the time-and region-specific activity of a perinatal progenitor domain that is required for transition and progression of OB neurogenesis from the embryonic-to-postnatal periods

    Known and unknown requirements in healthcare

    Get PDF
    We report experience in requirements elicitation of domain knowledge from experts in clinical and cognitive neurosciences. The elicitation target was a causal model for early signs of dementia indicated by changes in user behaviour and errors apparent in logs of computer activity. A Delphi-style process consisting of workshops with experts followed by a questionnaire was adopted. The paper describes how the elicitation process had to be adapted to deal with problems encountered in terminology and limited consensus among the experts. In spite of the difficulties encountered, a partial causal model of user behavioural pathologies and errors was elicited. This informed requirements for configuring data- and text-mining tools to search for the specific data patterns. Lessons learned for elicitation from experts are presented, and the implications for requirements are discussed as “unknown unknowns”, as well as configuration requirements for directing data-/text-mining tools towards refining awareness requirements in healthcare applications

    Roadmap for a sustainable circular economy in lithium-ion and future battery technologies

    Get PDF
    The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (EOL), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates EOL disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of EOL battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future

    The Roles of Gut Microbiome and Plasma Metabolites in the Associations between ABO Blood Groups and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES)

    No full text
    Non-O blood groups are associated with decreased insulin sensitivity and risk of type 2 diabetes. A recent study pinpointed the associations between ABO blood groups and gut microbiome, which may serve as potential mediators for the observed increased disease risks. We aimed to characterize associations between ABO haplotypes and insulin-related traits as well as potential mediating pathways. We assessed insulin homeostasis in African Americans (AAs; n = 109) and non-Hispanic whites (n = 210) from the Microbiome and Insulin Longitudinal Evaluation Study. The ABO haplotype was determined by six SNPs located in the ABO gene. Based on prior knowledge, we included 21 gut bacteria and 13 plasma metabolites for mediation analysis. In the white study cohort (60 ± 9 years, 42% male), compared to the O1 haplotype, A1 was associated with a higher Matsuda insulin sensitivity index, while a lower relative abundance of Bacteroides massiliensis and lactate levels. Lactate was a likely mediator of this association but not Bacteroides massiliensis. In the AAs group (57 ± 8 years, 33% male), we found no association between any haplotype and insulin-related traits. In conclusion, the A1 haplotype may promote healthy insulin sensitivity in non-Hispanic whites and lactate likely play a role in this process but not selected gut bacteria

    Expression and Suppressive Effects of Interleukin-19 on Vascular Smooth Muscle Cell Pathophysiology and Development of Intimal Hyperplasia

    No full text
    Anti-inflammatory cytokines may play a protective role in the progression of vascular disease. The purpose of this study was to characterize interleukin (IL)-19 expression and function in the development of intimal hyperplasia, and discern a potential mechanism of its direct effects on vascular smooth muscle cells (VSMCs). IL-19 is an immunomodulatory cytokine, the expression of which is reported to be restricted to inflammatory cells. In the present study, we found that IL-19 is not expressed in quiescent VSMCs or normal arteries but is induced in human arteries by injury and in cultured human VSMCs by inflammatory cytokines. Recombinant IL-19 significantly reduced VSMC proliferation (37.1 ± 4.8 × 103 versus 72.2 ± 6.1 × 103 cells/cm2) in a dose-dependent manner. IL-19 adenoviral gene transfer significantly reduced proliferation and neointimal formation in balloon angioplasty-injured rat carotid arteries (0.172 ± 29.9, versus 0.333 ± 71.9, and 0.309 ± 56.6 μm2). IL-19 induced activation of STAT3 as well as the expression of the suppressor of cytokine signaling 5 (SOCS5) in VSMCs. IL-19 treatment significantly reduced the activation of p44/42 and p38 MAPKs in stimulated VSMCs. Additionally, SOCS5 was found to interact with both p44/42 and p38 MAPKs in IL-19-treated human VSMCs. This is the first description of the expression of both IL-19 and SOCS5 in VSMCs and of the functional interaction between SOCS5 and MAPKs. We propose that through induction of SOCS5 and inhibition of signal transduction, IL-19 expression in VSMCs may represent a novel, protective, autocrine response of VSMCs to inflammatory stimuli
    corecore