131 research outputs found

    Diet and gene interactions influence the skeletal response to polyunsaturated fatty acids.

    Get PDF
    Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans

    Prenatal Exposure to DEHP Affects Spermatogenesis and Sperm DNA Methylation in a Strain-Dependent Manner.

    Get PDF
    Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms

    Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents

    Get PDF
    Aims/hypothesis: The IL-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine known to antagonise the actions of IL-1. We have previously shown that IL-1Ra is markedly upregulated in the serum of obese patients, is correlated with BMI and insulin resistance, and is overexpressed in the white adipose tissue (WAT) of obese humans. The aim of this study was to examine the role of IL-1Ra in the regulation of glucose homeostasis in rodents. Methods: We assessed the expression of genes related to IL-1 signalling in the WAT of mice fed a high-fat diet, as well as the effect of Il1rn (the gene for IL-1Ra) deletion and treatment with IL-1Ra on glucose homeostasis in rodents. Results: We show that the expression of Il1rn and the gene encoding the inhibitory type II IL-1 receptor was upregulated in diet-induced obesity. The blood insulin:glucose ratio was significantly lower in Il1rn −/− animals, which is compatible with an increased sensitivity to insulin, reinforced by the fact that the insulin content and pancreatic islet morphology of Il1rn −/− animals were normal. In contrast, the administration of IL-1Ra to normal rats for 5days led to a decrease in the whole-body glucose disposal due to a selective decrease in muscle-specific glucose uptake. Conclusions/interpretation: The expression of genes encoding inhibitors of IL-1 signalling is upregulated in the WAT of mice with diet-induced obesity, and IL-1Ra reduces insulin sensitivity in rats through a muscle-specific decrease in glucose uptake. These results suggest that the markedly increased levels of IL-1Ra in human obesity might contribute to the development of insulin resistanc

    Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology 149

    Get PDF
    ABSTRACT Despite medical advice, 20% to 30% of female smokers continue to smoke during pregnancy. Epidemiological studies have associated maternal smoking with increased risk of obesity and type-2 diabetes in the offspring. In the present study, we investigated the impact of prenatal nicotine exposure (3mg/kg in Sprague-Dawley rats via osmotic Alzet minipumps) on the early endocrine pancreas and adipose tissue development in rat pups before weaning. Body weight, fat deposition, food intake and food efficiency, cold tolerance, spontaneous physical activity, glucose utilization and insulin sensitivity were also examined at adulthood. Prenatal nicotine exposure led to a decrease in endocrine pancreatic islet size and number at 7 days of life (PND7) which corroborates with a decrease in gene expression of specific transcription factors such as Pdx-1, Pax-6, Nkx6.1 and of hormones such as insulin and glucagon. The prenatal nicotine exposure also led to an increase in epididymal white adipose tissue (eWAT) weight at weaning (PND21), and marked hypertrophy of adipocytes, with increased gene expression of proadipogenic transcription factors such as C/EBP-α, PPAR-γ and SREBP-1C. These early tissue alterations led to significant metabolic consequences, as shown by increased body weight and fat deposition, increased food efficiency on high fat diet, cold intolerance, reduced physical activity, glucose intolerance combined with insulin resistance observed at adulthood. These results prove a direct association between fetal nicotine exposure and offspring metabolic syndrome with early signs of dysregulations of adipose tissue and pancreatic development

    Decreased fatty acid beta-oxidation in riboflavin-responsive, multiple acylcoenzyme A dehydrogenase-deficient patients is associated with an increase in uncoupling protein-3

    Get PDF
    Decreased fatty acid beta-oxidation in riboflavin-responsive, multiple acylcoenzyme A dehydrogenase-deficient patients is associated with an increase in uncoupling protein-3.Russell AP, Schrauwen P, Somm E, Gastaldi G, Hesselink MK, Schaart G, Kornips E, Lo SK, Bufano D, Giacobino JP, Muzzin P, Ceccon M, Angelini C, Vergani L.Department of Medical Biochemistry, University of Geneva Medical Center, 1206 Geneva, Switzerland. [email protected], multiple acylcoenzyme A dehydrogenase deficiency (RR-MAD), a lipid storage myopathy, is characterized by, among others, a decrease in fatty acid (FA) beta-oxidation capacity. Muscle uncoupling protein 3 (UCP3) is up-regulated under conditions that either increase the levels of circulating free FA and/or decrease FA beta-oxidation. Using a relatively large cohort of seven RR-MAD patients, we aimed to better characterize the metabolic disturbances of this disease and to explore the possibility that it might increase UCP3 expression. A battery of biochemical and molecular tests were performed, which demonstrated decreases in FA beta-oxidation and in the activities of respiratory chain complexes I and II. These metabolic alterations were associated with increases of 3.1- and 1.7-fold in UCP3 mRNA and protein expression, respectively. All parameters were restored to control values after riboflavin treatment. We postulate that the up-regulation of UCP3 in RR-MAD is due to the accumulation of muscle FA/acylCoA. RR-MAD is an optimal model to support the hypothesis that UCP3 is involved in the outward translocation of an excess of FA from the mitochondria and to show that, in humans, the effects of FA on UCP3 expression are direct and independent of fatty acid beta-oxidation.<br/

    Lower birth weight and increased body fat at school age in children prenatally exposed to modern pesticides: a prospective study

    Get PDF
    Background: Endocrine disrupting chemicals have been hypothesized to play a role in the obesity epidemic. Long-term effects of prenatal exposure to non-persistent pesticides on body composition have so far not been investigated. The purpose of this study was to assess possible effects of prenatal exposure to currently used pesticides on children's growth, endocrine and reproductive function. Methods: In a prospective study of 247 children born by women working in greenhouses in early pregnancy, 168 were categorized as prenatally exposed to pesticides. At three months (n = 203) and at 6 to11 years of age (n = 177) the children underwent a clinical examination and blood sampling for analysis of IGF-I, IGFBP3 and thyroid hormones. Body fat percentage at age 6 to11 years was calculated from skin fold measurements. Pesticide related associations were tested by linear multiple regression analysis, adjusting for relevant confounders. Results: Compared to unexposed children birth weight and weight for gestational age were lower in the highly exposed children: -173 g (-322; -23), -4.8% (-9.0; -0.7) and medium exposed children: -139 g (-272; -6), -3.6% (-7.2; -0.0). Exposed (medium and highly together) children had significantly larger increase in BMI Z-score (0.55 SD (95% CI: 0.1; 1.0) from birth to school age) and highly exposed children had 15.8% (0.2; 34.6) larger skin folds and higher body fat percentage compared to unexposed. If prenatally exposed to both pesticides and maternal smoking (any amount), the sum of four skin folds was 46.9% (95% CI: 8.1; 99.5) and body fat percentage 29.1% (95% CI: 3.0; 61.4) higher. There were subtle associations between exposure and TSH Z-score -0.66(-1.287; -0.022) and IGF-I Z-score (girls: -0.62(-1.0; -0.22), boys: 0.38(-0.03; 0.79)), but not IGFBP3. Conclusions: Occupational exposure to currently used pesticides may have adverse effects in spite of the added protection offered to pregnant women. Maternal exposure to combinations of modern, non-persistent pesticides during early pregnancy was associated with affected growth, both prenatally and postnatally. We found a biphasic association with lower weight at birth followed by increased body fat accumulation from birth to school age. We cannot rule out some residual confounding due to differences in social class, although this was adjusted for. Associations were stronger in highly exposed than in medium exposed children, and effects on body fat content at school age was potentiated by maternal smoking in pregnancy

    β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue.

    Get PDF
    β-Klotho (encoded by Klb) is the obligate coreceptor mediating FGF21 and FGF15/19 signaling. Klb-/- mice are refractory to beneficial action of pharmacological FGF21 treatment including stimulation of glucose utilization and thermogenesis. Here, we investigated the energy homeostasis in Klb-/- mice on high-fat diet in order to better understand the consequences of abrogating both endogenous FGF15/19 and FGF21 signaling during caloric overload. Surprisingly, Klb-/- mice are resistant to diet-induced obesity (DIO) owing to enhanced energy expenditure and BAT activity. Klb-/- mice exhibited not only an increase but also a shift in bile acid (BA) composition featured by activation of the classical (neutral) BA synthesis pathway at the expense of the alternative (acidic) pathway. High hepatic production of cholic acid (CA) results in a large excess of microbiota-derived deoxycholic acid (DCA). DCA is specifically responsible for activating the TGR5 receptor that stimulates BAT thermogenic activity. In fact, combined gene deletion of Klb and Tgr5 or antibiotic treatment abrogating bacterial conversion of CA into DCA both abolish DIO resistance in Klb-/- mice. These results suggested that DIO resistance in Klb-/- mice is caused by high levels of DCA, signaling through the TGR5 receptor. These data also demonstrated that gut microbiota can regulate host thermogenesis via conversion of primary into secondary BA. Pharmacologic or nutritional approaches to selectively modulate BA composition may be a promising target for treating metabolic disorders

    Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphenol A (BPA) is a sealant and flux of plastic materials and has been determined to be an endocrine-disrupting chemical. Prenatal exposure to BPA can lead to substantial adverse effects on fetal growth and development. This study was conducted to assess BPA concentration in pregnant women and umbilical cord blood, and to investigate whether maternal BPA exposure affected fetal outcomes including lower birth weight (LBW), smaller size for gestational age (SGA), and high leptin (HLP) and low adiponectin (LAD) secretion.</p> <p>Methods</p> <p>We measured the BPA levels of maternal blood (n = 97) and umbilical cord blood (n = 97) with a high-performance liquid chromatography/UV detector. The protein secretion of leptin and adiponectin were separately determined using enzyme-linked immunosorbent assay. A logistic regression was performed to estimate the effects of maternal exposure to BPA on LBW, SGA, and adverse action of adipokines in newborns.</p> <p>Results</p> <p>The geometric means of BPA concentration in maternal blood and fetal cord blood were 2.5 ng/ml and 0.5 ng/ml, respectively. Elevated risks of LBW (OR 2.42, 95% confidence interval (CI) 1.72-3.36), SGA (OR 2.01, 95% CI 1.39-3.01), and adverse action of leptin (OR 1.67, 95% CI 1.12-2.25) and adiponectin (OR 1.25, 95% CI 1.52-3.97) were observed in male neonates in the highest quartile of maternal BPA exposure.</p> <p>Conclusions</p> <p>Elevated prenatal BPA exposure increased the risk of LBW, SGA, and adverse actions of adipokines in neonates, especially in male infants. These results provide further evidence that maternal exposure is correlated with adverse birth outcomes.</p

    Nicotinic acetylcholine receptors modulate osteoclastogenesis

    Get PDF
    Background: Our aim was to investigate the role of nicotinic acetylcholine receptors (nAChRs) in in-vitro osteoclastogenesis and in in-vivo bone homeostasis. Methods: The presence of nAChR subunits as well as the in-vitro effects of nAChR agonists were investigated by ex vivo osteoclastogenesis assays, real-time polymerase chain reaction, Western blot and flow cytometry in murine bone marrow-derived macrophages differentiated in the presence of recombinant receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The bone phenotype of mice lacking various nAChR subunits was investigated by peripheral quantitative computed tomography and histomorphometric analysis. Oscillations in the intracellular calcium concentration were detected by measuring the Fura-2 fluorescence intensity. Results: We could demonstrate the presence of several nAChR subunits in bone marrow-derived macrophages stimulated with RANKL and M-CSF, and showed that they are capable of producing acetylcholine. nAChR ligands reduced the number of osteoclasts as well as the number of tartrate-resistant acidic phosphatase-positive mononuclear cells in a dose-dependent manner. In vitro RANKL-mediated osteoclastogenesis was reduced in mice lacking α7 homomeric nAChR or β2-containing heteromeric nAChRs, while bone histomorphometry revealed increased bone volume as well as impaired osteoclastogenesis in male mice lacking the α7 nAChR. nAChR ligands inhibited RANKL-induced calcium oscillation, a well-established phenomenon of osteoclastogenesis. This inhibitory effect on Ca2+ oscillation subsequently led to the inhibition of RANKL-induced NFATc1 and c-fos expression after long-term treatment with nicotine. Conclusions: We have shown that the activity of nAChRs conveys a marked effect on osteoclastogenesis in mice. Agonists of these receptors inhibited calcium oscillations in osteoclasts and blocked the RANKL-induced activation of c-fos and NFATc1. RANKL-mediated in-vitro osteoclastogenesis was reduced in α7 knockout mice, which was paralleled by increased tibial bone volume in male mice in vivo. © 2016 Mandl et al
    corecore