8 research outputs found

    Domain-specific neural networks improve automated bird sound recognition already with small amount of local data

    Get PDF
    1. An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to collect bird observations on a scale that no human observer could ever match. During the last decades, progress has been made in the field of automatic bird sound recognition, but recognizing bird species from untargeted soundscape recordings remains a challenge. 2. In this article, we demonstrate the workflow for building a global identification model and adjusting it to perform well on the data of autonomous recorders from a specific region. We show how data augmentation and a combination of global and local data can be used to train a convolutional neural network to classify vocalizations of 101 bird species. We construct a model and train it with a global data set to obtain a base model. The base model is then fine-tuned with local data from Southern Finland in order to adapt it to the sound environment of a specific location and tested with two data sets: one originating from the same Southern Finnish region and another originating from a different region in German Alps. 3. Our results suggest that fine-tuning with local data significantly improves the network performance. Classification accuracy was improved for test recordings from the same area as the local training data (Southern Finland) but not for recordings from a different region (German Alps). Data augmentation enables training with a limited number of training data and even with few local data samples significant improvement over the base model can be achieved. Our model outperforms the current state-of-the-art tool for automatic bird sound classification.An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to collect bird observations on a scale that no human observer could ever match. During the last decades, progress has been made in the field of automatic bird sound recognition, but recognizing bird species from untargeted soundscape recordings remains a challenge. In this article, we demonstrate the workflow for building a global identification model and adjusting it to perform well on the data of autonomous recorders from a specific region. We show how data augmentation and a combination of global and local data can be used to train a convolutional neural network to classify vocalizations of 101 bird species. We construct a model and train it with a global data set to obtain a base model. The base model is then fine-tuned with local data from Southern Finland in order to adapt it to the sound environment of a specific location and tested with two data sets: one originating from the same Southern Finnish region and another originating from a different region in German Alps. Our results suggest that fine-tuning with local data significantly improves the network performance. Classification accuracy was improved for test recordings from the same area as the local training data (Southern Finland) but not for recordings from a different region (German Alps). Data augmentation enables training with a limited number of training data and even with few local data samples significant improvement over the base model can be achieved. Our model outperforms the current state-of-the-art tool for automatic bird sound classification. Using local data to adjust the recognition model for the target domain leads to improvement over general non-tailored solutions. The process introduced in this article can be applied to build a fine-tuned bird sound classification model for a specific environment.Peer reviewe

    Higher host-plant specialization of root-associated endophytes than mycorrhizal fungi along an arctic elevational gradient

    Get PDF
    How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.Peer reviewe

    Higher host-plant specialization of root-associated endophytes than mycorrhizal fungi along an arctic elevational gradient

    Get PDF
    How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.Peer reviewe

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    Publisher Copyright: © 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.Peer reviewe

    A Successful Crowdsourcing Approach for Bird Sound Classification

    No full text
    Automated recorders are increasingly used in remote sensing of wildlife, yet automated methods of processing the audio remains challenging. Identifying animal sounds with machine learning provides a solution, but optimizing the models requires annotated training data. Producing such data can require much manual effort, which could be alleviated by engaging masses to contribute to research and share the workload. Birdwatchers are experts on identifying bird vocalizations and form an ideal focal audience for a citizen science project aiming for the required multitudes of annotated avian audio data. For this purpose, we launched a web portal that was targeted and advertised to Finnish birdwatchers. The users were asked to complete two kinds of tasks: 1) classify if a given bird sound belonged to the focal species and 2) classify all the bird species vocalizing in 10-second audio clips. In less than a year, the portal achieved annotations for 244,300 bird sounds and 5,358 clips, and attracted, on average, 70 visitors on daily basis. More than 200 birdwatchers took part in the classification tasks, of which 17 and 4 most dedicated users produced over half of the sound and clip classifications, respectively. As expected of birder experts, the classifications among users were highly consistent (mean agreement scores between 0.85–0.95, depending on the audio type) and resulted in high- quality training data for parameterizing machine learning models. Feedback about the web portal suggested that additional functionality such as increased freedom of choice would increase user motivation and dedication.Peer reviewe

    A molecular‐based identification resource for the arthropods of Finland

    Get PDF
    To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this paper, we 1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), 2) publish this library, and 3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1,000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi). Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.peerReviewe
    corecore