320 research outputs found

    Topological wireless communication in the stopband of magnetoinductive lines

    Get PDF
    Conventionally, in engineering, the stopband of periodic structures, where propagating signals are unable to penetrate them, was of little interest to engineers. However, with the advent of topological physics, this has changed, and the stopband has moved into the center of attention. Here, we study the behavior of magnetoinductive waves in the stopband of a diatomic line. Surprisingly, here, we find that for lines hosting topological edge states, the signal power at frequencies in the stopband can be higher than anywhere in the passband. Further, they may also exceed both the signal power and Shannon capacity of a conventional monoatomic line, making them of interest for application in wireless communication

    Competition and coexistence of multiple mutually pumped oscillations in the visible and infra-red

    No full text
    A photorefractive oscillator. mutually pumped by three wavelengths is presented in various configurations and competition effects demonstrated. The theoretical model used to simulate the behaviour of the oscillation beams is in good agreement with experimental data

    Near-field Image Transfer by Magneto-Inductive Arrays: a Modal Perspective

    Full text link
    A simple model of near-field pixel-to-pixel image transfer using magneto-inductive arrays is presented. The response of N-dimensional rectangular arrays is first found as an excitation of eigenmodes. This analytical method involves approximating the effect of sources and detectors, and replaces the problem of solving large numbers of simultaneous equations with that of evaluating a sum. Expressions are given for the modal expansion coefficients, and in the low-loss case it is shown that the coefficient values depend only on the difference in reciprocal frequency space of the operating frequency from the resonant frequency of each mode. Analytic expressions are then derived for quasi-optical quantities such as the spatial frequency response, point-spread function and resolving power, and their implications for imaging fidelity and resolution are examined for arrays of different dimension. The results show clearly that there can be no useful image transfer for in-band excitation. Out-of-band excitation allows image transfer. Provided the array is larger than the expected image by at least the size of the point spread function, the effect of the array boundaries may be ignored and imaging is determined purely by the properties of the medium. However, there is a tradeoff between fidelity and throughput, and good imaging performance using thick slabs depends on careful choice of the operating frequency. The approximate analytic method is verified by comparison of exact numerical solution

    Subkelvin tunneling spectroscopy showing Bardeen-Cooper-Schrieffer superconductivity in heavily boron-doped silicon epilayers

    Full text link
    Scanning tunneling spectroscopies in the subKelvin temperature range were performed on superconducting Silicon epilayers doped with Boron in the atomic percent range. The resulting local differential conductance behaved as expected for a homogeneous superconductor, with an energy gap dispersion below +/- 10%. The spectral shape, the amplitude and temperature dependence of the superconductivity gap follow the BCS model, bringing further support to the hypothesis of a hole pairing mechanism mediated by phonons in the weak coupling limit.Comment: 4 pages, 3 figure
    • 

    corecore