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ABSTRACT

Conventionally, in engineering, the stopband of periodic structures, where propagating signals are unable to penetrate them, was of little
interest to engineers. However, with the advent of topological physics, this has changed, and the stopband has moved into the center of
attention. Here, we study the behavior of magnetoinductive waves in the stopband of a diatomic line. Surprisingly, here, we find that for
lines hosting topological edge states, the signal power at frequencies in the stopband can be higher than anywhere in the passband. Further,
they may also exceed both the signal power and Shannon capacity of a conventional monoatomic line, making them of interest for applica-
tion in wireless communication.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146831

I. INTRODUCTION

Ever since their first appearance,1,2 the properties of magne-
toinductive waves have been widely investigated.3,4 They are
examples of simple periodic structures upon which signals can
propagate. Dispersion equations have been derived exhibiting
both forward and backward waves. Monoatomic and diatomic
structures have been studied, showing that as a function of fre-
quency, both structures possess passbands and stopbands. The
main aim of this paper is a further study of these two bands. The
concepts have been around for a long time. They were probably
first identified by Lord Kelvin in his examinations of the proper-
ties of elastic waves.5 When electrical filters were invented6–8 at
the beginning of the 20th century, the same phenomena were
found and were given the same names. All electrical engineers
became familiar with the concepts of passing and stopping signals
as the frequency varied, whereas physicists encounter this during
a thorough study of the more general case of periodic structures.9

The terms passband and stopband are self-explanatory. Signals
can pass in the passband but in the stopband they are unable to
get through the line. The signal is stopped, or more precisely,
using the proper technical term, one can say that the signal is an
evanescent wave in the stopband. Hence, it is not surprising that
there was no interest in studying the stopband. The situation
changed, however, in the last decade, originating in the seemingly

distant field of condensed matter theory. The stopband has
moved into the center of attention.

It was found that, enforced and protected by fundamental
mathematical rules, highly resonant and robust resonances called
topological edge states may exist in the stopband.10–13 Very surpris-
ingly and contrary to all conventional wisdom, through the cou-
pling of such edge states, one may wirelessly transmit power in the
stopband efficiently and with higher robustness than in the pass-
band, as prior work has shown.14–16 As magnetoinductive wave-
guides used for wireless power transfer may also be used for
wireless communication, a naturally arising proposition is to inves-
tigate the use of topological edge states for the purpose of commu-
nications. In this work, we show that the signal power transmitted
by a suitably designed finite magnetoinductive line may also be
very significant and, remarkably, higher in the stopband than any-
where in the passband.

To this end, we start by introducing our model capable of
hosting topological edge states of magnetoinductive waves and
then investigate and optimize the signal power it may be able to
provide. We further show that such an approach provides multi-
ple advantages over conventional magnetoinductive waveguides,
leading to enhancements in both power output as well as an
enhancement of the Shannon capacity of the link. Finally, we
draw conclusions.
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II. MODEL

The model we consider in this work is a diatomic chain of
meta-atoms with an even number of elements N , as illustrated in
Fig. 1. Each element may be modeled as an LCR circuit with a self-
impedance of

Z0 ¼ jωLþ 1
jωC

þ R ¼ jωL 1� ω2
0

ω2
� j

ω0

ωQ

� �
, (1)

where R denotes the resistance, L is the self-inductance, C is
the capacitance, ω0 ¼ 1=

ffiffiffiffiffiffi
LC

p
is the resonant frequency, and

Q ¼ ω0L=R is the quality factor of this circuit.3 In this work, we
assume nearest-neighbor coupling only, meaning that the coupling
mechanism is mutual induction between pairs of adjacent resona-
tors with mutual inductances M1,2. Correspondingly, we define the
coupling coefficients as

κ1,2 ¼ 2
M1,2

L
: (2)

Let us briefly discuss and review the characteristics of such dia-
tomic magnetoinductive lines.3,17,18 We may assume that, for a line

of infinite length, the currents follow the biperiodicity of the struc-
ture and can be written as

I2n
I2n�1

� �
¼ Ae�jkn(d1þd2)

Be�jkn(d1þd2)

� �
, (3)

where A, B are complex current amplitudes and k is the wave
number. Making use of Kirchhoff’s equations for zero voltage

ZI ¼ 0, (4)

with I ¼ (I1, . . . , IN )
T being the current vector and Z being the

impedance matrix of the structure, where the impedance matrix
elements for an unloaded chain are

Znn ¼ Z0, (5)

as well as

Znm ¼ jωMnm, (n = m), (6)

we find the dispersion equation as3

cos kd ¼ �Z2
0 � ω2(M2

1 þM2
2)

2ω2M1M2
: (7)

In Fig. 2(a), we show the real and the imaginary part of k ¼ β � jα.
We can see that as one might expect by analogy with, e.g., acoustic
waves on diatomic chains, the dispersion splits into two passbands,
where waves may propagate, separated by a stopband, where only
evanescent waves exist.17,19 At the center of the stopband ω ¼ ω0,
these evanescent waves decay exponentially away from their excita-
tion point as

e�αd ¼ κ1

κ2

����
���� (κ2 . κ1): (8)

FIG. 1. Sketch of a diatomic magnetoinductive waveguide with coupling coeffi-
cients κ1,2 line driven with a voltage V and loaded with an impedance ZL.

FIG. 2. Characteristics of an infinite-length diatomic magnetoinductive waveguide with κ1 ¼ 0:15 and κ2 ¼ 0:3. The shaded frequency ranges indicate the passbands.
(a) Dispersion diagram for the real part of the wavenumber β and imaginary part α. (b) Phase ratio between neighboring sites arg(B=A). (c) Amplitude ratio between neigh-
boring sites jB=Aj.
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The amplitudes of waves on each of the meta-atoms in the unit cell
is found to be

B
A
¼ � 1

2
κ1 þ κ2e�jkd

1� ω2
0

ω2 � j ω0
ωQ

(9)

In Figs. 2(b) and 2(c), we show the phase and the amplitude of
this expression. The amplitude ratio of neighboring elements
approaches unity in the passband with decreasing losses and van-
ishes in the stopband. Moreover, in further analogy to acoustic
waves, for this choice of the signs of the coupling coefficients, in
the lower passband the amplitudes of neighboring elements
approach being in phase, whereas in the upper passband, they
approach being in antiphase, corresponding to “acoustic” and
“optical” bands, respectively. In the stopband, a phase jump
occurs, with a phase difference of �π=2 right at the resonant
frequency ω0.

17

So far, all these considerations have been for lines of infinite
length. In a chain with a finite number of elements N , N reso-
nances will occur at discrete points along the dispersion. For the
chain of infinite length, all calculations so far were invariant with
respect to interchange of the two coupling coefficients. This,
however, ceases to be the case for a finite-length structure. Here, an
additional quantity comes into play: the topological invariant of
the chain.20 As shown explicitly in prior works,14,21 this model
maps directly onto a Schrödinger-type problem of the form

HI ¼ ω2
0

ω2
1(1þ jωCR)� jωCZ½ �I: (10)

The matrix H is the equivalent of the Hamiltonian for this system,
in the sense that it is a transformation of the impedance matrix
into a matrix the eigenvalues of which are the eigenfrequencies of
the system. Both Z and H are symmetric tridiagonal matrices,
exactly like the matrix representation of the Hamiltonian of a tight-
binding model with nearest-neighbor coupling. Correspondingly,
this analog of a Hamiltonian H for our system turns out to directly
map onto tight-binding models in 1D. Our two-band circuit model
presented here is topologically equivalent to the Su–Schrieffer–
Heeger (SSH) chain, a well-known model from solid-state physics
that supports topological edge states.10,20 Hence, we may also find
its topological invariant, the winding number w to be

w ¼ d
2π

ðπ=d
�π=d

κ2ejkd

κ1 þ κ2ejkd
dk ¼ 1 if κ2 . κ1

0 if κ1 . κ2

�
: (11)

As for the SSH model, this invariant of the infinite chain then pre-
dicts whether for a chain of finite length any resonances, called
topological edge states, will occur inside the stopband depending
on whether the invariant vanishes or not.22 Correspondingly, the
theory of magnetoinductive waves contains topological states, in
full analogy to, e.g., the theory of electron waves, where these were
initially conceived. Taking full advantage of this parallelism and
the superior experimental and theoretical accessibility of such
microwave systems, magnetoinductive chains like this have

previously been used to study edge states, though only very recently
with a focus on applications rather than proofs-of-principle.23–25

Finally, in order to actually excite our structure and deliver a
signal, the voltage V ¼ (1, . . . , 0)T V is applied and the last element
is equipped with an additional, carefully chosen load impedance ZL.
Hence, the calculations in this work are taking into account that this
is an open system with power input and output. From Kirchhoff’s
law, we can then find all currents in the system as

I ¼ Z�1V: (12)

III. RESULTS AND DISCUSSION

With these preliminaries in place, we can begin our investiga-
tion. As a key figure of merit for a wireless link, in our system, we
may calculate the signal power P seen by the receiving load imped-
ance at the end of the chain as

P ¼ 1
2
Re ZLð Þ INj j2, (13)

where IN denotes the current in the last element. This quantity is
the target of our optimization. For the sake of making our calcula-
tions definite, we choose realistic fixed values for the resonant fre-
quency, ω0 ¼ 10MHz, the quality factor Q ¼ 250, and inductance
L ¼ 7 μH. The remaining free parameters, the coupling coefficients
as well as the load impedance, are now to be optimized. To do this
properly, we have to first establish a benchmarking procedure for
this type of near-field communication. Whether a platform is suit-
able for transmitting signals is determined by two interlinked
factors, namely its transmission distance and the signal strength it
manages to transmit over this distance. Clearly, they are related, as
typically signal power decreases with increasing transmission dis-
tance, to which our platform is no exception. This means that
when comparing different realizations of magnetoinductive wave-
guides, we ought to compare chains of equal length. The length of
the chain is (almost, assuming small meta-atoms compared to their
separation, which is true in our case) exclusively determined by the
coupling (or vice versa), which approximately scales as

κ / 1
d3

, (14)

where d is the spacing between two resonant elements. This is valid
given the elements are not packed too tightly, which for the
purpose of wireless signaling they, of course, should not be.
Correspondingly, using Eq. (14), we find that to ensure equal chain
length and thus transmission distance

XN
i

κ�1=3
i ¼

XN
i

~κ�1=3
i , (15)

where κi and ~κi are the coupling coefficients of two different
chains, should hold.

In Fig. 3, the optimized signal power for a chain of length
N ¼ 8 is shown. For every frequency, the optimal, i.e., matched,
the load impedance is determined numerically. As explained above,
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the transmission distance is fixed, meaning in this case we required
a constant κ�1=3

1 þ κ�1=3
2 � 3:38, ensuring that chains with differ-

ent coupling coefficients are comparable. We can clearly see the
presence of the two passbands separated by the bandgap that opens
and widens with increased deviation from the case of equal cou-
plings, meaning a monoatomic chain. Crucially, for κ2=κ1 � 2, i.e.,
in the topologically nontrivial regime, we see a pronounced global
maximum of the signal power in the center of the stopband. This is
indeed due to topological edge states present at the center of the
stopband coupling via their evanescent tails, as we illustrate in
Fig. 4. There, we show the normalized current for each of the ele-
ments. It can clearly be seen how the edge state excited on the left
edge (located on the sublattice of even-numbered elements) feeds
the edge state on the right (located on the sublattice of odd-
numbered elements) with its maximum located right on the loaded
element. This is happening via evanescent magnetoinductive waves
decaying from either end of the structure into the bulk, as indicated
by the dotted lines as given by Eq. (8). Fundamentally, this behav-
ior is quite reminiscent of the earlier example of surface plasmon
polaritons excited at the two opposing surfaces of a thin silver
slab.26,27 In Fig. 5, we plot a cut through the optimization plot at
the coupling ratio of the global maximum (κ2=κ1 ¼ 2) as well as
for its inverse (κ2=κ1 ¼ 1=2) and equal couplings (κ2=κ1 ¼ 1). We
can clearly see that the maximum power is significantly larger for
the topological chain than it is for both the monoatomic chain
with equal couplings as well as the topologically trivial chain with
swapped coupling coefficients. We note that this persists when the
fixed transmission distance is not required, meaning even a quite
significant increase in coupling and hence reduction in chain
length do not lead to a maximum signal power exceeding that of a
shorter topological chain. We emphasize here that this is not the
point of maximum efficiency as the maximum power transfer
theorem states that it is either power or efficiency that can be maxi-
mized but never both at the same time. Previous work has also

shown that in terms of efficiency, topological chains like ours here
while comparable usually do not outperform their monoatomic
counterparts. The enhancement of the signal power through using
the topological chain instead of, for example, the monoatomic
chain also stays robust against coupling disorder. In Fig. 6, we show
the average ratio of signal power delivered by the topological chain
over the signal power delivered by the monoatomic chain when

FIG. 5. Optimized signal power for coupling ratios of κ2=κ1 ¼ 2 as well as the
monoatomic case with κ2=κ1 ¼ 1. The peak signal power for the topological
chain significantly exceeds the power for the monoatomic chain and the trivial
chain (i.e., the topological chain with swapped couplings). The shaded fre-
quency ranges indicate the passbands.

FIG. 3. Signal power optimization of coupling ratio κ2=κ1 for constant transmis-
sion distance. The optimal load impedance is determined independently at
every frequency point. The dashed lines show the edges of the passbands and
the solid lines correspond to the eigenfrequencies of the system.

FIG. 4. Normalized real and imaginary part of current I at ω ¼ ω0 for optimal
signal transmission via coupled topological edge states. The dotted lines show
fitted exponential functions enveloping the real and imaginary parts of the
current, showing the exponential nature of the amplitude decay away from the
edges of the chain.
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randomly varying the distance between all elements n and m
according to

dnm ¼ (1þ δnm), (16)

with the perturbation δnm randomly distributed in the interval
(�Δ, Δ). Clearly, despite the disorder increasing to significant
values, the topological chain consistently outperforms its conven-
tional monoatomic counterpart. This is due to the edge state being
robust against this type of coupling disorder, which does not break
the chiral symmetry of the system.

We also note and would like to show in the following that a
very useful property of these types of magnetoinductive waveguides
is preserved for the topological chains, namely, random accessibil-
ity. With the term random accessibility, we specifically mean that
the power may be taken out of every unit cell by moving the load,
implying a significant advantage in flexibility and reconfigurability
compared to, for instance, a wire-based transmission setup. The
load for magnetoinductive waveguides is often a movable loaded
element, meaning that in most cases, this flexibility should prove
useful. In Fig. 7, one can see that even as the load impedance
is moved along the chain (albeit here with the restriction of access-
ing the same element in each unit cell every time), the power
output of the topological chain is consistently higher than that of
the conventional monoatomic chain. As a matter of fact, the closer
the load is to the excitation, the more strongly enhanced the output
power is, which can be understood in terms of the evanescent cou-
pling to the edge state, which vanishes more rapidly as the number
of elements and thus the distance between load and excitation is
increased. We mention here that this eventually also places a limit
on the applicability of our proposal: for a sufficiently long chain,
where the precise length is determined by the losses, the signal
transmission through the topological chain becomes weaker than
through the conventional chain as the evanescent coupling with the

edge state becomes exceedingly small. Potential strategies to miti-
gate this are subject of the ongoing work.

With a view of applications, this significant and robust
enhancement of power output may prove useful in schemes where
this raw power is most important, such as, for example, radio-
frequency identification (RFID), where exceeding a threshold power
level is essential to activate a passive transponder and ultimately
determines the distance over which it may be used.28 In a somewhat
different avenue of applications, we point out that this may also be
of use for localized microwave heating, since as we show in Fig. 4,
the increase in output power is due to the localized maximum in
current at the end of the chain, which, in turn, directly implies
maximum heat dissipation in that element while the other elements
dissipate considerably less heat, something that is desirable for
instance for some biomedical applications.29,30 Primarily though,
and hence subject to further discussion in the following, we envision
that this enhanced signal power will find its application in commu-
nication, where stronger signals are amongst the foremost optimiza-
tion targets for the construction of any communication link.

For the purpose of communications schemes, we know that
an additional variable plays a role in determining the performance
of a given link: the bandwidth. From the optimal power curve in
Fig. 5, it may be tempting to argue that the wider-band nature of
conventional links could offset the increased signal power of the
topological link. In a real setup that would not be the case, as the
receiver load would be fixed (and hence, only perfectly matched for
that one specific frequency) leading to a far more rapid drop-off in
signal strength when going off the operating frequency. We show
this in Fig. 8, where we take the same couplings as in Fig. 5 but
assume a fixed resistive load, in this case ZL ¼ (10þ 0:5j)Ω for the
topological and ZL ¼ (150� 0:5j)Ω for the monoatomic chain, is
optimal for power output at ω0. As can be seen clearly, the power
while of course identical at the center frequency drops off far more
rapidly with such a fixed load, leading to a much narrower band-
width than if the load impedance was perfectly optimized for each
frequency. Quantitatively, the law describing the capacity c of a
channel that derives from signal power and bandwidth is the

FIG. 6. Average signal power enhancement factor achieved by the topological
chain compared to the monoatomic chain as a function disorder. The area
shaded in blue indicates the standard deviation of the enhancement factor. Due
to the protection of the topological edge state against this type of disorder, the
enhancement is robust against it.

FIG. 7. Variation of the signal power for the topological chain as well as the
monoatomic chain with varying position of the load on one sublattice from unit
cell adjacent to excitation to end of the chain. For each position of the load, the
topological chain supplies a higher signal power than the monoatomic chain.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 133, 223101 (2023); doi: 10.1063/5.0146831 133, 223101-5

© Author(s) 2023

 07 July 2023 10:28:40

https://aip.scitation.org/journal/jap


Shannon–Hartley theorem31

c ¼
ðω0þB=2

ω0�B=2
log2 1þ P(ω)

N0

� �
dω, (17)

where N0 is the spectral density for the noise power, which here we
assume to be independent of frequency and B is the bandwidth,
i.e., full width at half maximum of the power around the operating
frequency ω0 as illustrated in Fig. 8. This additional variable of the
bandwidth now means that the answer of which link performs
better in terms of the Shannon capacity is, despite the typically
higher maximum signal power of the topological chain, not directly
obvious anymore. As can be seen in Fig. 9, the monoatomic chain
generally gives a wider bandwidth, though this becomes particu-
larly pronounced at low quality factors, where it rapidly increases
as all spectral features broaden due to losses. Such an increase can

also be seen for the topological chain, though there it is less pro-
nounced. On the other hand though, looking at Fig. 10, we can see
that, with an increasing quality factor, the signal power of the topo-
logical chain significantly outscales its conventional counterpart.
The insets show the current profile associated with each chain for a
low quality factor as well as a high quality factor. While, for the
monoatomic chain, the current profile remains flat and thus essen-
tially qualitatively independent from losses, we can see that for the
topological chain, there is a significant increase in current on the
receiving element hosting the topological edge state, correspond-
ingly also leading to an increase in signal power. We note here—in
a glance beyond communications—that this type of current profile
could also be attractive for applications where localized power
delivery is desirable, such as wireless but targeted heating. For the
Shannon capacity, these different scaling behaviors of decreasing
bandwidth but increasing power for the two chains mean that there
is no immediate answer as to which chain performs better. To
answer this, in Fig. 11, we show the enhancement of the Shannon
capacity for a topological chain over a conventional monoatomic
one as a function of both quality factor as well as noise power N0.
First, we can clearly see that below a quality factor of around 180,
the conventional chain always performs better. This is to be
expected as the power advantage of the topological chain is not sig-
nificant enough there to make up the bandwidth disadvantage.
Second, for lower noise powers, the conventional chain again per-
forms better. This is due to the scaling behavior of the Shannon
capacity, where with decreased noise power the capacity is limited

FIG. 10. Scaling of optimum output power with losses. When varying the
quality factor Q, it can clearly be seen that, as Q increases the topological chain
(blue) exponentially outscales the conventional one. The inset shows the behav-
ior of the currents as the quality factor increases.

FIG. 8. Signal power for the case of non-dispersive resistive load optimized for
the operation at ω0. In this case, the signal power drops off significantly faster
leading to a smaller bandwidth, the definition of which is illustrated in this figure.

FIG. 9. Scaling of the bandwidth with losses. For a low quality factor meaning
high losses, the bandwidth of the monoatomic chain rapidly increases while for
lower losses, it drops off at a rate similar to the topological chain, though the
monoatomic chain bandwidth consistently exceeds the bandwidth of the topolog-
ical chain.
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more by the bandwidth than the power, favoring the conventional
system. For a sufficiently high noise power and above a certain
value of the quality factor though, the topological chain is indeed
outperforming the conventional chain in terms of the Shannon
capacity. We can clearly see that the higher either noise or quality
factor are in this regime, the more pronounced this advantage
becomes, ranging in our limits up to almost 50% enhancement.

Hence, this clearly shows that, in a high noise regime and
given reasonably but realistically low losses, magnetoinductive wave
communication links may indeed be improved by using the topo-
logical chain instead of the conventional monoatomic one.

IV. CONCLUSIONS

In conclusion, we have proposed and investigated the advantages
of the use of topological edge states in diatomic magnetoinductive
waveguides for use in wireless communications. We have shown
that an evanescently excited topological edge state may provide sig-
nificant enhancements in signal power compared to conventional,
monoatomic setups utilizing propagating waves. The random
accessibility of magnetoinductive waveguides stays intact also for
such topological chains. This could prove useful to a range of
applications such as communications but also beyond that in appli-
cations where such peaks in power are desirable like RFID,28

heating29,30 or sensing.32 We have further shown that despite the
reduction in bandwidth due to the resonant nature of the topologi-
cal edge state, the signal power enhancement is large enough that
in a scenario with sufficiently low losses and high noise, it leads to
a notable enhancement of the Shannon capacity of the magnetoin-
ductive communications link.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed derivation of
Eqs. (7)–(9).
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