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Magnetoinductive waves propagating along a set of resonant metamaterial elements are studied
under the condition when the wave travels round a closed circular path and the total phase shift is
an integral multiple of 2. The resonant frequency of the circulating wave is shown to be related to
the resonant frequency of the element via the known dispersion relationship. The currents in the
elements are determined with the aid of the impedance matrix when the excitation is by a rotating
magnetic dipole located at the center of the structure. It is shown that the power taken out from one
element in the loop may approach N times that from a single element, where N is the number of
elements, provided the quality factor of the individual elements is sufficiently high and suitable
modifications are made to nearby elements. Potential applications to magnetic resonance

spectroscopy are discussed. © 2006 American Institute of Physics. [DOI: 10.1063/1.2209031]

I. INTRODUCTION

Metamaterials research seeks to understand how the
electromagnetic properties of a material can be changed, by
inserting a set of usually identical elements in a random or
periodic manner. The topic was popular after the second
World War for applications in radar antennas and was further
studied in the 1980s and 1990s in the search for chiral ma-
terials. A recent stimulus was the reevaluation of three semi-
nal papers on, respectively, negative refractive index material
by Veselago,' the split ring resonator” (also known as slotted
tube resonators” and loop-gap resonators4), and metallic rod
structures’ which offer low plasma frequencies. In 1999 Pen-
dry et al.® showed that split ring resonators (SRRs) may pro-
duce negative permeability within a certain frequency range
near to their resonant frequency. Smith ez al.” then combined
SRRs and rods to produce a material with both negative
permittivity and permeability. Later they validated Vesela-
go’s prediction of negative refraction.® Though some reser-
vations have been expressed, negative refraction essentially
follows from the existence of backward waves, which have
formed the basis of a number of microwave devices.” In fact,
Lindell et al.'® have suggested that negative index media
should be called backward wave media.

Theoretical approaches to metamaterials often use an ef-
fective medium approximation, which relies on the averag-
ing of microscopic fields.*!" The theory has been able to
predict the reflection and transmission of a transverse elec-
tromagnetic wave incident on a slab of metamaterial and
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measured results have been reasonably close to the predicted
ones. However, there have been no detailed comparisons be-
tween theory and experiment concerning the region of valid-
ity of the effective medium approximation, e.g., how small
or how far from each other the elements should be, and how
large the overall size of the medium should be. A limitation
of effective medium theory was soon apparent in that it could
not account for the presence of other than transverse electro-
magnetic (EM) waves.

Such additional waves may be excited by incident EM
waves (or sometimes just by voltage sources), but they can
have an entirely separate existence. They may propagate
along a set of metallic namoparticles,lz_14 loaded electric
dipoles,15 or capacitively loaded loops. Due to the magnetic
coupling between the elements, the waves propagating along
the latter structure have been termed magnetoinductive (MI)
waves.'® The simplest explanation of their properties is in
terms of nearest neighbor interactions analogous to the clas-
sical description of acoustic waves in crystals.17 A more de-
tailed analysis of MI waves'® was followed by experiments
on capacitively loaded loops and Swiss rolls.'”?°

Applications of MI waves have been reported for delay
lines,21 phase shifters,22 and microwave lenses.”> An early
application was for signal guidance in magnetic resonance
imaging (MRI), to try and improve the signal to noise ratio.”*
As will be discussed later, the relevance of the work de-
scribed here to MRI is currently unproved but there are
forms of magnetic resonance spectroscopy (MRS) in vivo for
which it may have relevance. Arrays of coils have long been
used for MR signal detection. However, it was generally ar-
gued that interaction between the elements should be
eliminated.” For nearest neighbors, this was achieved by
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FIG. 1. Rotational resonator composed of 24 capacitively loaded loops.

overlapping adjacent loops. Other MR detector designs do
rely on magnetic and electric interactions and are realized by
a combination of lumped and distributed elements. Examples
are the low- and high-pass birdcages26 and the dome
resonator,”’ used for imaging the human head.

It should be noted that in each case the physical basis of
dipole waves, MI waves, and the waves exploited in MRI
detectors is the interaction between resonant circuits, and
was first analyzed many years ago. For example, Nefedov
and Tretyakov22 recently found that Silin and Sazonov®® de-
rived the dispersion equation for waves on magnetically
coupled resonant circuits in their book on slow-wave struc-
tures published in Russia as early as 1966. The same disper-
sion equation also appears in an earlier book.”

This paper has been inspired by several disparate
sources. Two have already been mentioned, the existence of
waves on magnetically coupled elements and the need to
improve MR detection. A third is a recent investigation of
coupling between electromagnetic and MI waves,” and a
fourth is the ring resonator, which operates on the principle
that the total phase shift that a wave accumulates round a
closed path should be an integral multiple of 27. An
example—the circular strip-line resonator’ —is well known
in microwaves. An important fifth source is the cavity mag-
netron of Randall and Boot,” the high power microwave
source that did so much for World War II radar, and which is
operated by coupling power from a circulating electron beam
to an electromagnetic wave propagating round a ring of
coupled cavity resonators.

Combining these ideas, we propose here a ring resonator
in which MI waves travel round a circular structure consist-
ing of magnetically coupled, capacitively loaded loops. The
frequency range is not significant, as long as all the dimen-
sions are small relative to the electromagnetic wavelength.
Nonetheless, we have in mind the tens of megahertz region
of MRI. The geometry is shown in Fig. 1; it has analogies to
phased arrays in MRI, but the principle is actually quite dif-
ferent. Here, we make maximum use of the mutual induc-
tances to achieve a traveling MI wave resonance, which we
shall call “rotational resonance.” We couple the resonant MI
wave to a centrally located, rotating magnetic field and then
show how, using the magnetron principle, a power far in
excess of that available from an isolated element may be
delivered from a suitably modified element of the ring. This
development promises possible advances in MR signal de-
tection. In Sec. II we introduce the basic properties of MI
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FIG. 2. Schematic representation of nearest neighbor coupling between
loops.

waves and derive the conditions for rotational resonance. De-
tailed analysis and numerical results are presented in Sec. III.
Possible MR applications are discussed in Sec. IV and con-
clusions are drawn in Sec. V.

Il. BASIC PROPERTIES OF MAGNETOINDUCTIVE
WAVES

Magnetoinductive waves are known to exhibit a variety
of dispersion characteristics which may be anisotropic and
may represent both forward and backward waves.'#1? They
propagate along a set of magnetically coupled elements,
which we shall take in the form of capacitively loaded me-
tallic loops. In the simplest one-dimensional case, and in the
approximation that only the nearest neighbor interactions are
important, the relation between the currents in neighboring
elements may be obtained by applying Kirchhoff’s voltage
law to the nth loop (see Fig. 2) as

ZOIn+Zm(1n+l+1n—1)=O- (1)

Here Zy=R+ j(wL—1/wC) is the self-impedance of the loop,
L, C, and R are its inductance, capacitance, and resistance, @
is the angular frequency, and Z,,=jwM is the mutual imped-
ance between nearest neighbors, where M is the mutual in-
ductance. I, is the current in the nth loop. Assuming a trav-
eling wave in the form I,=1,exp(—jnkd), where d is the
distance between the elements, Eq. (1) modifies to

cos(kd) =—-Zy/2Z,,. (2)

Since the right-hand side of the above equation is complex, k
must also be complex, so that k=—ja, where B and « are
the propagation and attenuation coefficients. Equation (2) re-
duces then to two real equations which give the frequency
dependence of 8 and «

cos(Bd)cosh(ad) = K‘l[(w(z)/wz) -1], (3)

sin(Bd)sinh(ad) = (kQ) . (4)

Here k=2M/L is the coupling coefficient, wy=(LC)"? is
the resonant frequency of the loop and Q, is its quality fac-
tor. For low attenuation, the term cosh(ad) may be ignored
in Eq. (3) and ad may then be found from Eq. (4) as

ad=[Qox sin(Bd)]™. (5)

Next, we shall look at the arrangement shown in Fig. 1
where N coupled loops lie on the perimeter of a circle of
radius r. If N is large enough, the distance between the ele-
ments is related to r by d=2mr/N. A wave propagating
around a circular structure has a resonance when the circum-
ference of the circle is equal to an integral multiple of the
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wavelength. This occurs when 27r=s\ where s is an integer
and N\=27/f is the wavelength of the MI wave. Hence Bd
=2ms/N, and the frequency of the rotational resonance, from
Eq. (2), is

w,/wy=[1+ K cos(2ms/N)]™2. (6)

We shall briefly look at higher order resonances in Sec.
IIT E. Until then, we shall assume s=1. It may be seen from
Eq. (6) that the relative value of the fundamental resonance
depends only on « and N. For the geometrical arrangement
of Fig. 1, k is negative. In the numerical examples to follow
later we shall take N=24 and r=85 mm, yielding k=-0.11.
From Eq. (6) we then find that w,/wy=1.058, and full nu-
merical calculations yield w,/ wy=1.057.

Ill. ANALYSIS
A. Excitation of the rotational resonance

We now assume that the circular arrangement of reso-
nant loops is excited by a nucleus under magnetic resonance
conditions. This case can be modeled by a magnetic dipole
rotating at an angular velocity wy. The nucleus is assumed to
be at the center of the structure and the rotation is in the
plane defined by the loop centers. If the ring structure is
designed so that w, matches wy, it will be excited at the
fundamental resonance. The radial component of this rotat-
ing magnetic field will induce a voltage V,, in the nth loop. In
general the relation between the induced voltages and the
resulting currents is simply

V=1, (7)

Here V and [ are N-dimensional vectors, and Z is an NXN
matrix of the mutual impedances. Since the excitation is
in the form of a wave traveling round the structure, the in-
duced voltages must follow the same pattern. Hence the
nth element of the vector V may be written as V,=V,
Xexp(—j2mn/N), where V|, is a constant that can be deter-
mined from the geometry if the strength of the rotating mag-
netic dipole is known. Here V,, will be taken as known and
all the other quantities (current, output power) will be related
to it.

In the nearest neighbor approximation the impedance
matrix, denoted by Z(O) has the form

Zy Z, 0 O 0 Zz,
Zw Zo Z, 0 -+ 0 O
o z, 2o 2, - 0 O
Z(O)= PN (8)
0 -+ - Z, Zy Z, O
0 O o z, 72, Z,
Z, 0 -+ 0 0 Z, Z

The actual values of the mutual inductances for a par-
ticular geometry can be found by standard methods.* Due to
the circular symmetry of the excitation, the absolute values
of all currents must be identical and the phases must follow
those of the induced voltages. To see the relationship be-
tween the induced voltage and the current in a particular loop
we can take (say) n=2, which, from Eq. (8), yields
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V2 = Z()]z + Zm(ll + [3) = [ZO + ZZm Cos(kd)]lz. (9)

However, kd is now impressed and is real and equal to
2m/N. Hence

Im[Z, + 2Z,, cos(2m/N)] =0, (10)
whence we obtain
12 = V2/R (1 l)

This result (valid of course for all other elements) states that
the current in element 2 under rotational resonance is the
same as that obtained for a single uncoupled element excited
by the same voltage at its resonant frequency, wg. Such
simple result can of course be obtained only at the frequency
of rotational resonance. At other frequencies the current must
be found numerically by inverting the voltage to current re-
lationship, using

1=[Z97"v. (12)

B. Frequency variation of the current

For an example numerical calculation, we assume that
wy/27=63.87 MHz, which would be obtained for 'H NMR
in a field strength of 1.5 T. We also assume that w,=wy. For
the loop parameters we choose 10 mm for the radius of the
loop and 2 mm for the wire diameter. The value of the in-
ductance calculated from the loop geometry34 is L=33 nH
which leads then to a value of 187 pF for the capacitance.
The effect of losses (which limit the maximum power ex-
tractable) will be taken into account by considering three
values of the quality factor (Qy=100, 1000, and 10000) in all
subsequent calculations. However, we accept that the latter
two values can only, in practice, be realized by cooling the
windings in the first case and by making them superconduct-
ing in the second. These Q factors correspond to resistances
of 0.132, 0.0132, and 0.001 32 ().

The current flowing in an element (due to the circular
symmetry all currents are equal) is of course frequency de-
pendent. As the frequency departs from o, the current is
bound to decline. The variation of the current follows a stan-
dard resonance curve, from which the quality factor Q, of the
ring can be extracted. As may be expected, Q, is lower than
Q. Numerical calculations yield Q,=94.3, 944, and 9420 for
0y=100, 1000, and 10 000.

C. Extraction of power

So far, the loops have been excited without extracting
any power. We shall now compare the power that may be
extracted from an element under rotational resonance with
that obtained from a single uncoupled element at the same
distance from the excitation. For the latter case the output
power is

Pouo=Vol*Qo/8woL,  |Vol* = (uoH,A)%, (13)

where u is the free space permeability, H, is the radial com-
ponent of the magnetic field at the center of the loop due to
the rotating nuclear dipole, and A is the area of the loop. For
rotational resonance, we choose to extract power from the

Downloaded 25 Sep 2007 to 155.198.4.89. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



123908-4 Solymar et al.

TABLE I. Optimum load reactance and resistance and the corresponding
power ratio for Qy=100, 1000, and 10 000

Q RL/R X,/R e

100 4.18 -2.73 6.03
1000 115 -0.076 11.8

10 000 12.0 -0.0076 11.98

first element. The maximum power output, P, may be
obtained by finding the optimum impedance Z; =R; +jX; to
be inserted into this loop. The values of the optimum load
impedance and those of the maximum power ratio

g = Pout,m/P()ul,O (14)

are shown in Table I. The results suggest that the limiting
values of both the resistance ratio and the power ratio will
approach N/2 as Q tends to infinity.

It is always desirable to check the numerical calculations
by analytical methods whenever possible. We now do so,
under conditions of rotational resonance and high Q,. We
first note that Z© in Eq. (8) is the unperturbed impedance
matrix. We denote the perturbed matrix by ;(L); this matrix is
identical with Z© except for the [Z(”],, element, which is
changed from Z; to Zy+Z;. As a result, the first row of
[ZP] " and [Z'9T ! are the same, but their determinants are
different. Hence

1o =1z12", (15)
where I(IL) and 1(10) are the currents in the first loop under
loaded and unloaded conditions at the frequency of the rota-
tional resonance. In the Appendix, we show with the aid of
Chebyshev polynomials that, in the limit when Qy— %, Eq.
(15) may be expressed as

12Oz =11 +22,/NRT, (16)
whence the power ratio is
(1/2)|IP PR, /(1/8)|IVPR = (4R, /R)|1 +2Z,/NR|™>. (17)

Looking for the maximum of Eq. (17) we find the optimum
values of the load reactance and resistance as X; =0 and R;,
=NR/2, and for the optimum power ratio we also obtain ¢
=N/2. Clearly the extrapolations made from the numerical
results have been proved to be correct. It is also interesting to
note [it follows from Eq. (15)] that the currents at rotational
resonance obey again the same relationship as the currents in
a simple resonant circuit—the current at optimum load is just
one-half of that in the absence of a load.

In the unperturbed case, without power extraction, all the
currents were shown to be of the same absolute value. Con-
sidering further the progressive variation of phase, the cur-
rents would constitute a circle in the complex plane. When
the symmetry is disturbed, by extracting power from a par-
ticular element, the currents may no longer be expected to lie
on a circle. Figures 3(a)-3(c) show the variation of the cur-
rent with the element number in the complex plane at the
rotational frequency, for Qy=100, 1000, and 10 000. Each
plot is normalized so that the current in element 1 is real and
the maximum value of the current is unity. For the lowest
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FIG. 3. Normalized currents in a 24 element ring with optimized load im-
pedance plotted in the complex plane for (a) Qy=100, (b) Qy=1000, and (c)
Qy=10000. The numbering starts with element 1, which contains the load,
and increases clockwise.

value of Q, the curve is severely distorted. Near the element
from which the power is extracted, the values of current are
reduced. For Qy=1000 some symmetry appears; the current
is reduced where it is extracted and also on the opposite side.
For Q,=10000 the conclusions are the same, and the plot
tends to an ellipse.

We wish to point out that the increase in output power
when resonant elements are coupled to each other in a ring
structure is analogous to what happens in a cavity magne-
tron. In that case the excitation is provided by electrons pass-
ing in front of the coupled resonant cavities, and the joint
output is extracted from a single cavity.

At this stage the question arises whether calculations
based on nearest neighbor interactions are sufficiently accu-
rate. In order to give here an estimate of that accuracy we
shall optimize the load impedance under conditions when all
the interactions between the elements are taken into account.
It leads to additional numerical calculations but the principle
is simple. We need to calculate the mutual inductance be-
tween any two elements and insert its value into the N X N
matrix shown in Eq. (8). The numerically optimized load
impedance is found as Z;/R=10.4-3.12j and {=11.36. The
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FIG. 4. Normalized current amplitudes in a 24 element ring with optimized
load impedance plotted in the complex plane for Q,=1000. Solid line: near-
est neighbor interactions, dashed line: all interactions.

corresponding normalized current distribution (dashed line)
is shown in Fig. 4 for Q,=1000 together with the same re-
lationship calculated from nearest neighbor interaction (solid
line). The two curves look very similar. The main effect of
taking all interactions into account is a consistent shift in the
phases of the currents. When it comes to design there is no
doubt that we shall have to take into account all possible
interactions but for exploring the properties of the rotational
resonance, as we do here, nearest neighbors lead to very
good approximations. We shall therefore continue employing
the simpler model in the rest of the paper.

D. Increase of power output by additional matching
impedances

We have shown that under rotational resonance it is pos-
sible to obtain N/2 times as much power out of a single
loaded element as from an uncoupled loop. Is there room for
further improvement? One feels intuitively that violating the
circular symmetry, i.e., inserting a load in just one element,
is a major perturbation that cannot possibly lead to an abso-
lute maximum. One may argue then that its harmful effect
can be mitigated (or even eliminated) by inserting further
matching impedances. The right positions here are likely to
be the nearest neighbors. We shall therefore insert reactances
(denoted by Xy, and X, ,) into elements N and 2. However,
in the present case the optimum load impedance will also
depend on the matching reactances. Hence we need to opti-
mize simultaneously Z;, Xy, and X, ,. Their values and
those of { can be found in Table II. For the power ratio the
trend is clear: { tends to N as Q, increases. We hope to
provide an analytical proof in a future paper. We have calcu-
lated the corresponding normalized current distributions and
found them to lie closer to the circle of unit radius than those
in Fig. 3, as expected. In fact, for Qy=10000 the current
distribution practically coincides with the unit circle.

TABLE II. Optimum load reactance, resistance, matching impedances, and
the corresponding power ratio for Q,=100, 1000, and 10 000

0 R,/R X,/R Xy /R X,/ R ¢
100 5.96 -2.87 8.74 -3.46 8.49

1000 21.1 -3.23 32.02 -162 235
10 000 22.68 -0.45 2351 -21.85 23.96
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FIG. 5. Frequencies of the higher order resonances.

E. Higher order resonances

A higher order rotational resonance occurs when, as
mentioned in Sec. II, the perimeter of the resonant structure
is equal to sA\. Smaller MI wavelength means higher value of
Bd and correspondingly lower value of frequency. The high-
est distinguishable resonance occurs for s=N/2, when the
amplitude of the wave changes sign from element to ele-
ment. The variation of the rotational resonant frequency with
the order of the resonance is shown in Fig. 5 for N=24. This
relationship is somewhat at variance with expectations. The
frequency of higher order resonances in familiar electromag-
netic or acoustic resonators rises with the order. For MI
waves in the present planar configuration, higher order reso-
nances occur at lower frequencies because the wave is a
backward one.

The current distribution for higher order resonances may
be determined by the same technique as before, by numeri-
cally optimizing the load impedance in element 1 and the
reactances in the neighboring elements (their values are
shown in the caption of Fig. 6). The main difference is that
one needs an excitation that varies correspondingly to excite
a higher resonance. Here, we consider the case of s=2,
which requires a quadrupole excitation, i.e., a voltage vary-
ing as V,=V, exp(—j4mmn/N). The resultant current distribu-
tion is plotted in the complex plane in Fig. 6, with all the
other parameters as before. The period has clearly been
halved.

F. The inverse problem

We have shown that a traveling wave voltage excitation
leads to a current distribution which, when terminated by an
optimum load, becomes more and more akin to a traveling

0
Re(l}

FIG. 6. Normalized currents for the second rotational resonance in a 24
element ring plotted in the complex plane. Z; =0.0294—0.0004j 2, Xy,
=0.0226 (), and X, ,=-0.0209 Q.
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0
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FIG. 7. Normalized currents in a 24 element ring excited by a rotating
dipole (circles) and by a voltage applied to the load (crosses) for (a) Q,
=1000 and (b) Q=10 000.

wave distribution as Q increases. Is the converse true? Hav-
ing determined the optimum load and matching impedances,
can we then omit the exciting magnetic dipole and obtain a
traveling wave current in the loops by applying a voltage to
the optimized load? We have chosen for illustration two
cases with optimized load and matching reactances using the
normalization procedure of Fig. 3. The corresponding current
distributions are shown in Figs. 7(a) and 7(b) for Qy=1000
and 10 000, respectively. Note that the rotating magnetic di-
pole gives rise to a clockwise varying phase distribution (de-
noted by circles). In contrast, a voltage applied to the load
induces a current distribution (denoted by crosses) with an
anticlockwise phase variation. The two counterpropagating
current distributions have similar, but not identical, ampli-
tudes. For Q=10 000 the two distributions are very close to
circles suggesting that in the absence of losses the direct and
inverse problems have the same current distributions, and
their only difference is the direction of travel.

G. Dependence on the various parameters

In order to perform the various numerical calculations
we had to choose actual values for a number of parameters
such as the radius of the structure, the number of elements,
the value of the loop inductance, and the frequency of opera-
tion. Obviously there is a need to see what happens as all
these parameters are varied. While investigating many ex-
amples, we have found that changing the parameters intro-
duces only minor variation, leaving the conclusions un-
changed. We have shown that with the aid of rotational
resonance up to N times more power can be extracted from a
single matched coil. However, two important questions re-
main unanswered: what is the optimum shape of the resonant
coil and what is the optimum number of elements? It is un-
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likely that the circular shape (adopted here for simplicity)
would be optimum. A rectangular form would be more effi-
cient picking up power from the rotating dipole and it might
even be desirable to fit the coil over a spherical surface. The
optimum number of elements would depend on the size and
shape of the sample and would require a definition of opti-
mum performance (e.g., to maximize the signal to noise ra-
tio) which we have been unable to discuss in the present
paper but hope to return to it in a future publication.

IV. APPLICATIONS TO NMR AND FUTURE WORK

MRI involves signal acquisition from very large num-
bers of sources (known as voxels) distributed throughout a
volume that potentially occupies much of the interior of any
detector. The analysis in this paper does not describe this
situation. On the other hand, MRS in vivo is frequently per-
formed on single voxels which, because of the low concen-
trations of many of the metabolites of interest, are generally
much larger than those used in MRI. Techniques such as
image-selected in vivo spectroscopy>> (ISIS) (for phos-
phorus) and stimulated echo acquisition mode®® (STEAM)
(for protons) use single voxels located centrally in the tissue.
The performance of MRS is limited by the signal to noise
ratio, and the signal gain described here may offer a potential
solution. The parameters we have assumed (for example, the
ring radius) are appropriate to the study of the pediatric
brain, and we hope to investigate this application in the fu-
ture.

The present work can be extended in other directions.
For example, the planar configuration could be replaced by a
quasiaxial one, allowing the elements to be placed closer
together. It would also be desirable to investigate the cases
when the nuclei exciting the MI wave are offset from the
center of the ring, as occurs in most NMR studies, or when
the number of elements to be detected is much larger and
they are widely distributed (as in MRI). Another interesting
line of study would be to investigate the response when a
nonlinear element (a varactor) is inserted in the loop, when it
should be possible to achieve parametric amplification of the
signal at the source. Another set of problems to be studied is
the use of the phenomenon of rotational resonance for deter-
mining the position of a small number of rf sources, which
are used to track inserted devices.

V. CONCLUSIONS

The propagation of MI waves on a circular set of reso-
nant loops has been studied when excited by a rotating mag-
netic dipole located at the center of the structure. The ana-
Iytical calculations have been based on nearest neighbor
interactions which were shown to give good approximation
by comparing it with a numerical approach that included all
interactions between the elements. It has been shown that
such waves can have resonances (called rotational reso-
nances) when the perimeter is equal to an integral number of
MI wavelengths. Optimum conditions for extracting power
from a loaded loop in a chain of N loops have been deter-
mined. It has been proven analytically and numerically that
the extractable power is N/2 (without additional matching
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elements) or N times (with such elements) larger than that
obtainable from a single uncoupled resonant loop. The in-
verse problem of applying a voltage to a single element con-
taining the optimized load has also been studied and it has
been shown that traveling wave currents can be obtained.
Applications in MRS have been identified.
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APPENDIX

We shall find here an analytic expression for |Z?)|/|Z")]
in Eq. (15) when the quality factor tends to infinity. We start
with a normalization procedure dividing each element of the

matrix in Eq. (8) by Z,, and introducing the notation
x=2y27,,=—cos(kd). (A1)

The resulting N X N matrix will be denoted by §<O) and will
take the form

2x 1.0 0 --- 0 1
1 2x 1 0 --- 0 O
0 1 2x 1
8= (A2)

For the derivation to follow we shall need to define three
further matrices.

(1) é(L), which is identical with §<0) apart from the (1,1)
element which is 2x+27;/Z,,.

(2) U, which is identical with é(o) apart from the (1,N) and
(N, 1) elements which are equal to zero (physically this
is the normalized impedance matrix of a linear array, in
which the first and Nth elements are not coupled to each
other).

(3) Tisidentical with U apart from the (1,1) element, which
is equal to x instead of 2x.

The determinants of these N X N matrices will be denoted by
5(1\(,]), 6(NL ), Uy, and Ty. The aim is to express

1201z = 8018y,

with the aid of Ty and Uy which define, respectively, the first
and second kind of the Nth order Chebyshev polynomial.37
We also need the alternative definitions

Ty[cos(q)] = cos(Ng)
and
Uplcos(g)]=sin[(N + 1)g]/sin(q).

Next we can show that

(A3)

(A4)

(A5)
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8 =89 +(2,/Z,) Uy, (A6)
with which Eq. (A1) modifies to
IZOUZP | =1+ (2/Z,) Upet T (A7)

It may be shown from simple determinant relationships that
&' =20Ty~ (= DV]. (A8)

Using now Eq. (Al) and the definition of Eq. (A4), and
performing a number of trigonometric operations, Eq. (A6)
reduces to

Uy_1/8Y) = — sin(Nkd){2 sin(kd)[cos(Nkd) —1]}™". (A9)
Under conditions of rotational resonance

kd=27IN - jad. (A10)

Assuming further that losses are very small (i.e., Qy— )
and using Eq. (5) we find the required result

Uy /80 =27, INR (A11)
N- N m

whence Eq. (16) follows.
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