27 research outputs found
Functional traits influence patterns in vegetative and reproductive plant phenology â a multi-botanical garden study
1. Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous speciesâ phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits.
2. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for speciesâ relatedness.
3. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of speciesâ life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations.
4. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communitiesâ competitive hierarchies with consequences for biodiversity
Phenological diversity is linked to the diversity of functional traits in alpine grasslands
Climate change is exerting a profound influence on the timing of seasonal development of vegetation, i.e. phenology, worldwide - and particularly in mountain grasslands. A key feature controlling the resilience of alpine plant communities to climate change is phenological plasticity: the ability to express different phenologies within a given plant assemblage can help the community to better cope with climate shifts and extremes. Recent work has shown a tight relationship between phenology and certain plant functional traits, especially those associated to competition and growth rate.
Phenocameras proved to be an effective mean to monitor community-level phenology by retrieving average phenological signals across a portion of the field of view of digital cameras. Here we used pixel-level information to quantify spatially-explicit phenology from multi-year imagery acquired over 5 alpine grasslands in the western Alps. Concurrently, based on site-specific species inventories we retrieved information about functional traits from the global plant trait database TRY.
The objectives of this work are:
1) to assess the link between phenological diversity and plant functional trait diversity in alpine grasslands;
2) to test the consistency in space and time of the functional diversity-phenological diversity relationship.
A total of 19 year-sites of phenocam images were processed to obtain maps of phenological metrics. We focused on either spring (start of season, moment of greenness peak, spring recovery rate), autumn (end of season, start of senescence, autumn senescence rate) or full season (length of season, greenness integral) metrics. To describe the spatial distribution of phenological metrics we used indexes such as the Moran Index and the Entropy index. The FD R package was used to compute multidimensional functional diversity.
We will illustrate the traits that best correlate with phenological diversity across the 5 different grasslands included in this study and discuss inter-year and inter-site variability in the relationships in the light of climate variability
Spatial variability in herbaceous plant phenology is mostly explained by variability in temperature but also by photoperiod and functional traits
Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous speciesâ phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species characterised by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated
The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens
Changes in phenology induced by climate change occur across the globe with important implications for ecosystem functioning and services, species performance and trophic interactions. Much of the work on phenology, especially leaf out and flowering, has been conducted on woody plant species. Less is known about the responses in phenology of herbaceous species induced by global change even though they represent a large and important part of biodiversity worldwide. A globally coordinated research effort is needed to understand the drivers and implications of such changes and to predict effects of global change on plant species phenology and related ecosystem processes.
Here, we present the rationale of the PhenObs initiative-botanical gardens as a global phenological observation network. The initiative aims to collect data on plant phenology in botanical gardens which will be used alongside information on plant traits and site conditions to answer questions related to the consequences of global change:
What is the variation in plant phenology in herbaceous species across the growing season and in response to changes in climate?
How can plant phenology be predicted from species' trait composition, provenance, position and extent of the distribution range and species' phylogeny?
What are the implications of this variation with respect to species performance and assembly, biotic interactions (e.g. plant-pollinator interactions) as well as ecosystem processes and services under changing land use and climate?
Here, we lay out the development of a straightforward protocol that is appropriate for monitoring phenology across a vast diversity of growth forms of herbaceous species from various habitats and geographical regions.
To focus on a key number of stages necessary to capture all aspects of plant species phenology, we analysed associations between 14 phenological stages. These data were derived from a 2-year study on 199 species in four German botanical gardens.
Based on the relationships of the phenological stages, we propose to monitor three vegetative stages ('initial growth', 'leaves unfolding' and 'senescence') and two reproductive stages ('flowers open' and 'ripe fruits') to fully capture herbaceous species phenology.
A free Plain Language Summary can be found within the Supporting Information of this article
Ecosystem consequences of invertebrate decline
Human activities cause substantial changes in biodiversity.1,2 Despite ongoing concern about the implications of invertebrate decline,3,4,5,6,7 few empirical studies have examined the ecosystem consequences of invertebrate biomass loss. Here, we test the responses of six ecosystem services informed by 30 above- and belowground ecosystem variables to three levels of aboveground (i.e., vegetation associated) invertebrate community biomass (100%, 36%, and 0% of ambient biomass) in experimental grassland mesocosms in a controlled Ecotron facility. In line with recent reports on invertebrate biomass loss over the last decade, our 36% biomass treatment also represented a decrease in invertebrate abundance (â70%) and richness (â44%). Moreover, we simulated the pronounced change in invertebrate biomass and turnover in community composition across the season. We found that the loss of invertebrate biomass decreases ecosystem multifunctionality, including two critical ecosystem services, aboveground pest control and belowground decomposition, while harvested plant biomass increases, likely because less energy was channeled up the food chain. Moreover, communities and ecosystem functions become decoupled with a lower biomass of invertebrates. Our study shows that invertebrate loss threatens the integrity of grasslands by decoupling ecosystem processes and decreasing ecosystem-service supply
Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes
13 PĂĄg.
Departamento de Medio Ambiente y AgronomĂaâ (INIA)Remote sensing capabilities to monitor evergreen broadleaved vegetation are limited by the low temporal variability in the greenness signal. With canopy greenness computed from digital repeat photography (PhenoCam), we investigated how canopy greenness related to seasonal changes in leaf age and traits as well as variation of treesâ water fluxes (characterized by sap flow and canopy conductance). The results showed that sprouting leaves are mainly responsible for the rapid increase in canopy green chromatic coordinate (GCC) in spring. We found statistically significantly differences in leaf traits and spectral properties among leaves of different leaf ages. Specifically, mean GCC of young leaves was 0.385 ± 0.010 (mean ± SD), while for mature and old leaves was 0.369 ± 0.003, and 0.376 ± 0.004, respectively. Thus, the temporal dynamics of canopy GCC can be explained by changes in leaf spectral properties and leaf age. Sap flow and canopy conductance are both well explained by a combination of environmental drivers and greenness (96% and 87% of the variance explained, respectively). In particular, air temperature and vapor pressure deficit (VPD) explained most of sap flow and canopy conductance variance, respectively. Besides, GCC is an important explanatory variable for variation of canopy conductance may because GCC can represent the leaf ontogeny information. We conclude that PhenoCam GCC can be used to identify the leaf flushing for evergreen broadleaved trees, which carries important information about leaf ontogeny and traits. Thus, it can be helpful for better estimating canopy conductance which constraints water fluxes.The authors acknowledge the Alexander von Humboldt Foundation for supporting this research with the Max Planck Prize to Markus Reichstein. Yunpeng Luo and Mirco Migliavacca gratefully acknowledge the financial support from the China Scholarship Council. ADR acknowledges support for the PhenoCam network from the National Science Foundation ( DEB- 1702697 ). Javier Pacheco-Labrador and Mirco Migliavacca acknowledge the German Aerospace Center (DLR) project OBEF-Accross2 âThe Potential of Earth Observations to Capture Patterns of Biodiversityâ (Contract No. 50EE1912). The research also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721995 and Ministerio de EconomĂay Competitividad through FLUXPEC CGL2012-34383 and SynerTGE CGL2015-G9095-R (MINECO/FEDER, UE) projects.Peer reviewe
TRY plant trait database â enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives