29 research outputs found

    Phase transition in protocols minimizing work fluctuations

    Full text link
    For two canonical examples of driven mesoscopic systems - a harmonically-trapped Brownian particle and a quantum dot - we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade-off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence. As a result, the two types of protocols possess qualitatively different properties and remain distinct even in the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal work protocols, which therefore never become quasistatic.Comment: 6 pages, 6 figures + SI as ancillary fil

    From Phase to Micro-Phase Separation in Flocking Models: The Essential Role of Non-Equilibrium Fluctuations

    Get PDF
    We show that the flocking transition in the Vicsek model is best understood as a liquid-gas transition, rather than an order-disorder one. The full phase separation observed in flocking models with Z2 rotational symmetry is, however, replaced by a microphase separation leading to a smectic arrangement of traveling ordered bands. Remarkably, continuous deterministic descriptions do not account for this difference, which is only recovered at the fluctuating hydrodynamics level. Scalar and vectorial order parameters indeed produce different types of number fluctuations, which we show to be essential in selecting the inhomogeneous patterns. This highlights an unexpected role of fluctuations in the selection of flock shapes.Comment: 5 p., 5 fig.. Supplementary material: 7 movie

    Response of active Brownian particles to shear flow

    Full text link
    We study the linear response of interacting active Brownian particles in an external potential to simple shear flow. Using a path integral approach, we derive the linear response of any state observable to initiating shear in terms of correlation functions evaluated in the unperturbed system. For systems and observables which are symmetric under exchange of the xx and yy coordinates, the response formula can be drastically simplified to a form containing only state variables in the corresponding correlation functions (compared to the generic formula containing also time derivatives). In general, the shear couples to the particles by translational as well as rotational advection, but in the aforementioned case of xyxy symmetry only translational advection is relevant in the linear regime. We apply the response formulas analytically in solvable cases and numerically in a specific setup. In particular, we investigate the effect of a shear flow on the morphology and the stress of NN confined active particles in interaction, where we find that the activity as well as additional alignment interactions generally increase the response.Comment: 13 pages, 4 figure

    Mechanical pressure and momentum conservation in dry active matter

    Full text link
    We relate the breakdown of equations of states for the mechanical pressure of generic dry active systems to the lack of momentum conservation in such systems. We show how sources and sinks of momentum arise generically close to confining walls. These typically depend on the interactions of the container with the particles, which makes the mechanical pressure a container-dependent quantity. We show that an equation of state is recovered if the dynamics of the orientation of active particles are decoupled from other degrees of freedom and lead to an apolar bulk steady-state. This is related to the fact that the mean steady-state active force density is the divergence of the flux of "active impulse", an observable which measures the mean momentum particles will receive from the substrate in the future

    Generic long-range interactions between passive bodies in an active fluid

    Full text link
    Because active particles break time-reversal symmetry, a single non-spherical body placed in an active fluid generates currents. We show that when two or more passive bodies are placed in an active fluid these currents lead to long-range interactions. Using a multipole expansion we characterize their leading-order behaviors in terms of single-body properties and show that they decay as a power law with the distance between the bodies, are anisotropic, and do not obey an action--reaction principle. The interactions lead to rich dynamics of the bodies, illustrated by the spontaneous synchronized rotation of pinned non-chiral bodies and the formation of traveling bound pairs. The occurrence of these phenomena depends on tunable properties of the bodies, thus opening new possibilities for self-assembly mediated by active fluids.Comment: 21 pages, 6 figure

    Generalized thermodynamics of Motility-Induced Phase Separation: Phase equilibria, Laplace pressure, and change of ensembles

    Full text link
    Motility-induced phase separation (MIPS) leads to cohesive active matter in the absence of cohesive forces. We present, extend and illustrate a recent generalized thermodynamic formalism which accounts for its binodal curve. Using this formalism, we identify both a generalized surface tension, that controls finite-size corrections to coexisting densities, and generalized forces, that can be used to construct new thermodynamic ensembles. Our framework is based on a nonequilibrium generalization of the Cahn-Hilliard equation and we discuss its application to active particles interacting either via quorum-sensing interactions or directly through pairwise forces.Comment: 33 pages, 14 figure

    Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

    Get PDF
    Computing genetic evolution distances among a set of taxa dominates the running time of many phylogenetic inference methods. Most of genetic evolution distance definitions rely, even if indirectly, on computing the pairwise Hamming distance among sequences or profiles. We propose here an average-case linear-time algorithm to compute pairwise Hamming distances among a set of taxa under a given Hamming distance threshold. This article includes both a theoretical analysis and extensive experimental results concerning the proposed algorithm. We further show how this algorithm can be successfully integrated into a well known phylogenetic inference method

    Pattern formation in flocking models: A hydrodynamic description

    Get PDF
    International audienceWe study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models

    Generalized thermodynamics of phase equilibria in scalar active matter.

    Get PDF
    Motility-induced phase separation (MIPS) arises generically in fluids of self-propelled particles when interactions lead to a kinetic slowdown at high densities. Starting from a continuum description of scalar active matter akin to a generalized Cahn-Hilliard equation, we give a general prescription for the mean densities of coexisting phases in flux-free steady states that amounts, at a hydrodynamics scale, to extremizing an effective free energy. We illustrate our approach on two well-known models: self-propelled particles interacting either through a density-dependent propulsion speed or via direct pairwise forces. Our theory accounts quantitatively for their phase diagrams, providing a unified description of MIPS
    corecore