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Motility-induced phase separation (MIPS) arises generically in fluids of self-propelled particles
when interactions lead to a kinetic slowdown at high densities. Starting from a continuum description
of scalar active matter akin to a generalized Cahn-Hilliard equation, we give a general prescription for
the mean densities of coexisting phases in flux-free steady states that amounts, at a hydrodynamics
scale, to extremizing an effective free energy. We illustrate our approach on two well-known models:
self-propelled particles interacting either through a density-dependent propulsion speed or via direct
pairwise forces. Our theory accounts quantitatively for their phase diagrams, providing a unified
description of MIPS.
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Active materials, composed of particles individually
capable of dissipatively converting energy into motion [1–
5], display a fascinating range of large-scale properties [6–
12]. Among them, motility-induced phase separation [13]
(MIPS) has recently attracted a lot of interest [5, 13–
30]. It arises because self-propelled particles accumulate
in regions where they move more slowly [31]. When in-
teractions between particles lead to their slowing down
at high density, a positive feedback leads to phase sepa-
ration between a high-density low-motility phase and a
low-density high-motility phase. Remarkably, this liquid-
gas phase separation happens without the need of any
attractive interactions, leading to the emergence of co-
hesive matter without cohesive forces. First postulated
in idealized toy models [14–20], MIPS has since been ad-
dressed experimentally using self-propelled colloids [5, 21]
and genetically engineered bacteria [32].

The aforementioned instability mechanism leading to
MIPS is by now well understood and has been used to
define a spinodal region where homogeneous phases are
linearly unstable [13, 14]. Furthermore, this instability
can be understood at the (fluctuating) hydrodynamic
level [14, 18, 25, 33, 34] where the dynamics of active
particles undergoing a kinetic slowdown at high density
reduce to an equilibrium Model B [35]. On the contrary,
there is no comprehensive theory predicting the binodals:
the mapping to equilibrium breaks down at higher or-
der in gradients [23] and the corresponding equilibrium
predictions for the coexisting binodal densities are vio-
lated [23, 36].

MIPS has been observed in two broad classes of sys-
tems. In a first class of models [14, 15, 22, 33], MIPS
arises from an explicit density-dependence of the propul-
sion speed v(ρ). This mimics the way cells adapt their
motion to the local density measured through the concen-
tration of a chemical signal, and we refer to such particles

as ‘quorum-sensing active particles’ (QSAPs). There, one
can define a chemical potential µ [14] which is equal in
coexisting phases, but the coexisting pressures, whether
mechanical [36] or thermodynamic [23], are unequal. In
a second class of models [16–19], particles propelled by a
constant force interact via an isotropic, repulsive pair po-
tential; the slowdown triggering MIPS is now due to col-
lisions. Contrary to QSAPs, the mechanical pressure P
of such ‘pairwise-force active particles’ (PFAPs), defined
as the force density on a confining wall, is equal in co-
existing phases. However, an effective chemical potential
defined from the thermodynamic equilibrium relation [37]
PV = Nµ − F with ∂F/∂N = µ takes unequal values
in coexisting phases, causing violation of the equilibrium
Maxwell equal-area construction [29]. For both models,
we thus lack a constraint to complement the equality
of pressure (PFAPs) or chemical potential (QSAPs) to
fix the values of coexisting densities. The difference be-
tween these two classes of models can be shown to stem
from whether or not an effective momentum conservation
holds in the steady-state [38]. When such a conserva-
tion law is present, as in PFAPs, the pressure is given
by an underlying equation of state and is equal in the
two phases [24, 29, 39]. On the contrary, in the absence
of this conservation law, this is generically not the case.
All in all, a comprehensive theory of the phase equilibria
in MIPS, that would in particular encompass these two
different classes of models, remains elusive.

In this Rapid Communication, we propose a unified
theory of MIPS based on phenomenological hydrody-
namic equations of motion for the scalar density field.
We show how the binodals are determined at this level
from a common tangent construction on an effective free
energy density. Our formalism encompasses equilibrium
systems for which one recovers the standard thermody-
namic free energy and, in that case only, the equality
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among phases of both pressure and chemical potential.
We then show how this generic formalism can be applied
to precise models of QSAPs and PFAPs, accounting for
their phase diagrams. In particular, we show that dif-
ferent intensive quantities are equal between coexisting
phases in PFAPs and QSAPs.

General framework. We consider a continuum descrip-
tion of active particles with isotropic, non-aligning inter-
actions. In this scalar active matter, the sole hydrody-
namic field is thus the conserved density ρ(r, t), obeying
ρ̇ = −∇ ·J. By symmetry, the current J vanishes in
homogeneous phases. Its expansion in gradients of the
density involves only odd terms under space reversal. At
third order, we use [40]:

ρ̇ = ∇ · (M∇g); g = g0(ρ) + λ(ρ)|∇ρ|2 − κ(ρ)∆ρ. (1)

The noiseless hydrodynamic equation (1) describes the
evolution of the average coarse-grained density field on
scales much larger than the correlation length and time.
It can thus be used to characterize fully phase-separated
profiles, away from the critical point where noise is irrel-
evant [41], to predict binodal densities. Eq. (1) plays the
same role as the Cahn-Hilliard equation does for equilib-
rium phase-separating systems [41] but in general does
not admit an equilibrium free energy structure. In what
follows, we first start with Eq. (1) and show how to com-
pute analytically its phase diagram. We then consider
a microscopic model of QSAPs for which we obtain the
coefficients of Eq. (1) in terms of microscopic parameters
by coarse-graining. Finally, we show that our formalism
can also be applied to PFAPs, even though closed expres-
sions of the coefficients appearing in (1) are not known
explicitly in this case.

Equation (1) predicts a linear instability of a homoge-
neous profile of density ρ0 whenever g′0(ρ0) < 0 [42]: this
is the standard linear instability leading to MIPS [14]
and defines the spinodal region. We now proceed to es-
tablish the corresponding binodals. As in equilibrium, we
consider a fully phase-separated system. A macroscopic
droplet of the minority phase has an infinite curvature
radius, and hence effectively flat interfaces, so that cur-
vature effects are negligible. As in equilibrium, the prob-
lem, though n-dimensional, reduces to studying the one-
dimensional profile perpendicular to the interface [41].
We thus consider a flat interface, parallel to ŷ, between
coexisting gas and liquid phases at densities ρg and ρ`.
In a steady state with vanishing current, M∇g = 0, so
that g is constant throughout the system: g[ρ(r, t)] = ḡ.
This yields a first equation relating ρg and ρ`:

g0(ρg) = g0(ρ`) = ḡ. (2)

A second relation can now be obtained by consider-
ing a function R(ρ) and integrating g(ρ)∂xR across the
interface. Replacing g(ρ) by its value ḡ or its explicit ex-
pression in Eq. (1), one finds two equivalent expressions

for
∫ x`

xg
g(ρ)∂xRdx:

(R` −Rg)ḡ = φ(R`)−φ(Rg)+

∫ x`

xg

[λ(∂xρ)2−κ∂2xρ]∂xRdx

(3)
where xg and x` lie within the bulk gas and liquid phases,
R`/g ≡ R(ρ`/g), and φ is defined by dφ/dR = g0(ρ). To
simplify Eq. (3), we choose R(ρ) such that

κR′′ = −(2λ+ κ′)R′, (4)

where (′) denotes d/dρ. Then, one has that

[λ(∂xρ)2 − κ∂2xρ]∂xR = −∂x
[
κR′

2
(∂xρ)2

]
(5)

the integral of which vanishes between any two bulk
planes where ∂xρ = 0. Eq. (3) then yields a second con-
straint:

h0(R`) = h0(Rg); h0(R) ≡ Rφ′(R)− φ(R) (6)

Because R is nonlinear in ρ, the lever rule, ρ`V`+ρgVg =
ρ0V is nonlinear in R, but still determines the phase
volumes V`,g. Also the densities ρ`,g do not vary as one
moves along the ‘tie-line’ by changing the global mean
density ρ0. This is not true generally in non-equilibrium
phase separation [43].

Eqs. (2,6) show the coexisting densities to satisfy a
common tangent construction on an effective (bulk) free
energy φ(R) =

∫
g0(ρ)dR. The mathematical similarity

with an equilibrium common tangent construction can
be traced to the fact that Eq. (1) can be written as

ρ̇ = ∇ · [M [ρ]∇g]; g =
δF

δR
, (7)

with F =
∫
dr[φ(R) + κ

2R′ (∇R)2]. The stationary solu-
tions of Eq. (1) then correspond to extrema of the ‘effec-
tive’ free energy F. Note that (7) holds in any dimension.
This highlights that, although the construction of the
binodals (2)-(6) relies on a single coordinate normal to
the interface, our results for the binodals are valid in any
dimensions. Last, since R(ρ) is a bijection, the spinodal
region is equivalently defined by φ′′(R) < 0 or g′0(ρ) < 0.

To see how our formalism works, let us first consider
an equilibrium case, in which g has an even simpler form

g =
δF
δρ(r)

; F [ρ] =

∫
[f(ρ) +

c(ρ)

2
(∇ρ)2]dr. (8)

Eq. (1) is then the Cahn-Hilliard equation for a system
with free energy F [ρ] and mobility M [ρ] [44]. Eq. (8) is
consistent with (7) since it imposes 2λ + κ′ = 0 so that
R = ρ (up to an additive and a multiplicative constant
which do not affect the phase equilibria) and F = F .
We recover φ(R) = f(ρ) as the bulk free energy density,
g0(ρ) = f ′(ρ) as the chemical potential, and h0(ρ) =
f ′(ρ)ρ− f(ρ) as the pressure.
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Our common tangent construction on φ(R), which
amounts to extremizing F, thus reverts to the usual one
in equilibrium, but extends beyond this. We now show
how our formalism can be used to derive the phase dia-
grams of QSAPs and PFAPs.

QSAPs. We consider particles i = 1....N , moving at
speeds vi along body-fixed directions ui, which undergo
both continuous rotational diffusion with diffusivity Dr

and complete randomization with tumbling rate α. Each
particle adapts its speed v(ρ̃i) to the local density

ρ̃i(r) =

∫
dr′K(r− r′)ρ̂(r′)dr′ (9)

with K(r) an isotropic coarse-graining kernel, and ρ̂(r) =∑
i δ(r− ri) the microscopic particle density.
Deriving hydrodynamic equations from microscopics is

generally difficult, even in equilibrium [45]. For QSAPs
we can follow the path of [14, 33, 34], taking a mean-field
approximation of their fluctuating hydrodynamics. We
first assume a smooth density field so that the velocity
can be expanded as [46]

v(ρ̃i) ≈ v(ρ) + `2v′(ρ)∆ρ+O(∇3) (10)

where ρ is evaluated at ri and `2 = 1
2

∫
r2K(r)dr. Fol-

lowing [33, 34], the fluctuating hydrodynamics of QSAPs
is then given by ρ̇ = ∇ · (M∇g +

√
2MρΛ) [46], with Λ

a unit white noise vector and

g0(ρ) = log(ρv); M = ρ
τv(ρ̃)2

d
;

κ(ρ) = −`2 v
′

v
; λ(ρ) = 0 ,

(11)

where d is the number of spatial dimensions. Here,
τ ≡ [(d − 1)Dr + α]−1 is the orientational persistence
time. The mean-field hydrodynamic equation of QSAPs
is then Eq. (1) with the coefficients in Eq. (11). This
hydrodynamic description is expected to hold whenever
the correlation length is sufficiently small for the mean-
field approximation to be valid and the interfaces are
sufficiently smooth so that the gradient expansion is jus-
tified.

To construct the phase diagram, for a given choice of
v(ρ), we first solve Eq. (4) for R(ρ) and use it to obtain
both φ(R) and h0(R). The binodals then follow via a
common-tangent construction on φ(R) or, equivalently,
by setting equal values of h0 and g0 in coexisting phases.
Note that since 2λ+ κ′ 6= 0 one has R 6= ρ.

Fig. 1 shows the phase diagrams predicted by our gen-
eralized thermodynamics and by QSAP simulations. As
expected, the hydrodynamic description works best fairly
close to the critical point (but outside a numerically un-
resolved Ginzburg interval where fluctuations cannot be
neglected). This is where interfaces are smoothest and
the gradient expansion Eq. (10) most accurate. To de-
termine precisely the binodals, we choose a v(ρ) (given in

0 1 2 3
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1d RTPs
2d RTPs
2d ABPs

0.6 0.8 1.0 1.2 1.4

Rg R` R

φ− ḡR (b)

Figure 1. a: Phase diagrams of QSAPs. The solid lines corre-
spond to common tangent constructions on φ(R) (red) or f(ρ)
(black). Dashed lines correspond to the spinodals φ′′(R) = 0.
Data points are from simulations of run-and-tumble particles
(RTPs, α = 1, Dr = 0) or active Brownian particles (ABPs,
α = 0, Dr = 1) in 1D on lattice or 2D in continuous space.
Black triangles correspond to supplementary movies show-
ing nucleation or spinodal decomposition [46]. For all plots,

v(ρ) = v0 + v1−v0
2

[
1 + tanh( ρ−ρm

Lf
)
]
, K(r) = exp(− 1

1−r2 )/Z

with Z a normalization constant, ρm = 200, v1 = 5, Lf = 100.
b: Common tangent construction on φ(R) for v0 = 20.

the caption of Fig. 1) such that MIPS occurs only at large
densities, leading to well-separated coexisting densities.
Under these conditions, our mean-field approximation
works very well: the agreement between predicted and
measured binodals is excellent. In contrast, a common
tangent construction on f(ρ) defined by f ′(ρ) = g0(ρ) as
proposed before [14, 33] gives a poorer estimate since it
correctly captures the equality of g0 in both phases but
not that of h0. This reminds us that gradient terms di-
rectly influence the coexisting densities through Eq. (4) –
quite unlike the equilibrium case. As an aside, it is re-
markable that for QSAPs we can quantitatively predict
the phase diagram of a microscopic model without any
fitting parameter, something rare even for equilibrium
models.

Beyond the quantitative prediction of the phase dia-
gram, our approach provides insight into the universality
of the MIPS seen for QSAPs. For instance, the phase
diagram does not depend on the kernel K, which enters
Eq. (11) only through the constant `2 which then can-
cels from Eq. (4) defining the nonlinear transform R(ρ).
Likewise, Fig. 1 includes lattice simulations of QSAPs in
1d where full phase separation is replaced by alternating
domains (whose densities obey the predicted binodal val-
ues), and confirms the equivalence of continuous (ABP)
and discrete (RTP) angular relaxation dynamics for QS-
APs [33, 34].

PFAPs. We now consider self-propelled particles, of
diameter σ, in 2d, interacting via a short-range repulsive
pair potential V (see [46] for details):

ṙi = −
∑
j

∇iV (|ri−rj |)+
√

2Dtξi+v0ui; θ̇i =
√

2Drηi.

Here a microscopic mobility multiplying the first term
was set to unity; ui = (cos θi, sin θi), and ηi, ξi are unit
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Gaussian white noises. For simplicity, we only include
continuous rotational diffusion, but we expect our results
to stand for tumbles as well since this difference as been
shown to have a negligible effect on the phase equilib-
ria [34]. MIPS occurs in this system if the Péclet number
Pe = 3v0/(σDr) exceeds a threshold value Pec ∼ 60 [16–
19].

We follow [29, 47] to derive a fluctuating hydrodynam-

ics for the stochastic density ρ̂(r) =
∑N
i=1 δ(r − ri) the

deterministic limit of which gives a coarse-grained equa-
tion for the mean density field. On time scales larger than
D−1r , in our phase-separated set-up with a flat interface
parallel to ŷ, the dynamics is given by ρ̇ = ∂2xg [29], with

g([ρ], x) = Dtρ+
v20

2Dr
(ρ+m2) + Î2 −

v0Dt

Dr
∂xm1 + PD;

PD =

∫ x

−∞
dx

∫
∂xV (r′ − r)〈ρ̂(r′)ρ̂(r)〉d2r′; (12)

Î2 = − v0
Dr

∫
∂xV (r′ − r)〈ρ̂(r′)m̂1(r)〉d2r′.

Here, m̂n =
∑N
i=1 δ(r − ri) cos(nθi) and mn = 〈m̂n〉,

where 〈. . . 〉 represent averages over noise realizations.
The lack of steady-state current shows g to be uniform
in the phase-separated system, equal to some constant ḡ.

For homogeneous systems the expression for g in
Eq. (12) reduces exactly to the equation of state (EOS)
found previously for the mechanical pressure P of
PFAPs [29]. Thus g is equal between phases, as it was
for QSAPs, but now it represents pressure, not chemical
potential. Moreover, Eq. (12) generalizes the pressure
EOS of [29] to inhomogeneous situations. It can formally
be written g = g0(ρ(x)) + gint([ρ], x) where g0(ρ) is the
pressure in a notionally homogeneous system with aver-
age density ρ, and the ‘interfacial’ term gint represents
all nonlocal corrections to this. The form of g used in
Eq. (1) can then be viewed as a gradient expansion of
Eq. (12) for PFAPs.

One way forward would be to make that expansion (or
perhaps avoid it by using a closed-form ansatz for gint),
and then find R(ρ) and φ(R) analytically as was done for
QSAPs above. Here however we proceed differently, ap-
proximating instead the local part, g0(ρ), of g in Eq. (12)
by a well benchmarked, semi-empirical EOS, with pa-
rameters constrained by simulations of uniform phases
at Pe = 40 < Pec [46]. We thus retain the exact struc-
ture of the nonlocal terms, gint(x) ≡ g([ρ], x) − g0(ρ(x))
in Eq. (12), but find them numerically. Although less
predictive than knowing such terms algebraically, our
method clearly illustrates how they select the binodals.
Furthermore, gint includes all orders in gradient and
hence does not rely on a gradient expansion, contrary
to Eq. (1).

We then proceed as in Eq. (3) but, instead of R, now
using the volume per particle ν ≡ ρ−1. The integral

∫ x`

xg
(g−g0) ∂xν dx then admits two equivalent expressions∫ νg

ν`

(g0(ν)− ḡ)dν =

∫ x`

xg

gint ∂xν dx. (13)

Here g0(ν) is the pressure-volume EOS, so that the non-
zero value of the right hand integral directly quantifies
violation of the Maxwell construction. A fully predictive
theory would evaluate the right hand side integral and
then solve g0(ν`) = g0(νg) = ḡ together with Eq. (13) to
obtain the values of the binodals ν` and νg. In practice,
we measure g(x) numerically via Eq. (12) from which we
subtract g0(ρ(x)) and integrate over space to obtain the
numerical value of the right hand side of Eq. (13). Cru-
cially, ḡ, νg and ν` are not inputs here, but are found
by solving Eq. (13). Concretely this is done via a mod-
ified Maxwell construction: The binodals correspond to
the intersect between the function g0(ν) and a horizontal
line of (unknown) ordinate ḡ since g0(ν`) = g0(νg) = ḡ.
We then adjust the value of ḡ to solve Eq. (13). This con-
struction is illustrated in Fig. 2, and is accurately obeyed
by simulations, unlike the equilibrium Maxwell construc-
tion, which (notwithstanding [37]) clearly fails to account
for the phase equilibria of PFAPs where interfacial terms
again directly enter.

In this article, we have shown how to build a general-
ized theory of phase-separating scalar active matter start-
ing from a generalized Cahn-Hilliard description derived
on symmetry grounds. Our work accounts for the phase
equilibria of two important classes of self-propelled par-
ticles, PFAPs and QSAPs, which each undergo MIPS.
In contrast to equilibrium systems, interfacial contribu-
tions to pressure and/or chemical potential generically
affect the binodal densities at coexistence [23, 29]. We
have given in Eqs. (2,6) an explicit construction for the
binodals at leading non-trivial order in a gradient expan-
sion. This is quantitatively accurate for MIPS in QS-
APs at high density. In Eq. (13) we have given a more
general construction that holds beyond the gradient ex-
pansion; we tested it using numerical data on PFAPs.
In practice, our results are obtained by deriving the co-
existing densities of fully phase-separated profiles in the
steady-state. Extending our formalism to account for
the dynamical convergence to this state is an exciting
challenge left for future works. Similarly, the fate of our
generalized thermodynamic formalism when more than
one conserved field is present is an open question.

Interestingly, QSAPs and PFAPs share the same math-
ematical structure but their coexisting densities are se-
lected by equating intensive observables which have dif-
ferent physical interpretation. In particular, the mechan-
ical pressure is identical in coexisting phases for PFAPs,
but not for QSAPs, due to the lack of an effective mo-
mentum conservation in the latter case [38]. This funda-
mental difference is well captured by our formalism which
indeed leads to different observables g for the two models.
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Figure 2. a: Mechanical pressure of PFAPs. Semi-empirical
EOS g0(ν) (line) vs numerical measurements (symbols) for
various Pe. Open symbols correspond to binodals, horizontal
lines to the pressure ḡ predicted by Eq. (13). b: Corre-
sponding phase diagrams obtained via the modified (red; see
text) and the equal-area (blue) Maxwell constructions, com-
pared with numerically measured binodals (black). Dashed
lines correspond to the spinodals g′0(ρ) = 0. Black triangles
correspond to supplementary movies showing nucleation or
spinodal decomposition [46].

Beyond understanding the phase equilibria of active
matter, we hope that our approach will pave the way
towards a more general definition of intensive thermody-
namic parameters [48–50] for active systems. Building
a thermodynamic theory of active matter would further
improve our understanding and control of these intrigu-
ing systems and has become a central question in the
field [3, 14, 23–25, 29, 34, 36, 37, 39, 51–56].
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