281 research outputs found
Random walks and polymers in the presence of quenched disorder
After a general introduction to the field, we describe some recent results
concerning disorder effects on both `random walk models', where the random walk
is a dynamical process generated by local transition rules, and on `polymer
models', where each random walk trajectory representing the configuration of a
polymer chain is associated to a global Boltzmann weight. For random walk
models, we explain, on the specific examples of the Sinai model and of the trap
model, how disorder induces anomalous diffusion, aging behaviours and Golosov
localization, and how these properties can be understood via a strong disorder
renormalization approach. For polymer models, we discuss the critical
properties of various delocalization transitions involving random polymers. We
first summarize some recent progresses in the general theory of random critical
points : thermodynamic observables are not self-averaging at criticality
whenever disorder is relevant, and this lack of self-averaging is directly
related to the probability distribution of pseudo-critical temperatures
over the ensemble of samples of size . We describe the
results of this analysis for the bidimensional wetting and for the
Poland-Scheraga model of DNA denaturation.Comment: 17 pages, Conference Proceedings "Mathematics and Physics", I.H.E.S.,
France, November 200
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
Heart failure risk across the spectrum of ankle-brachial index: The ARIC study (Atherosclerosis RiskIn Communities)
The aim of this study was to describe the relationship between ankle brachial index (ABI) and the risk for heart failure (HF). Background: The ABI is a simple, noninvasive measure associated with atherosclerotic cardiovascular disease and death; however, the relationship between ABI and risk for HF is less well characterized. Methods: Between 1987 and 1989 in the ARIC (Atherosclerosis Risk In Communities) study, an oscillometric device was used to measure blood pressure in a single upper and randomly chosen lower extremity to determine the ABI. Incident HF events were defined by the first hospitalization with an International Classification of Diseases, Ninth Revision, code of 428.x through 2008. The risk for HF was assessed across the ABI range using restricted cubic splines and Cox proportional hazards models. Results: ABI was available in 13,150 participants free from prevalent HF. Over a mean 17.7 years of follow-up, 1,809 incident HF events occurred. After adjustment for traditional HF risk factors, prevalent coronary heart disease, subclinical carotid atherosclerosis, and interim myocardial infarction, compared with an ABI of 1.01 to 1.40, participants with ABIsâ€0.90 were at increased risk for HF (hazard ratio: 1.40; 95% confidence interval: 1.12 to 1.74), as were participants with ABIs of 0.91 to 1.00 (hazard ratio: 1.36; 95% confidence interval: 1.17 to 1.59). Conclusions: In a middle-age community cohort, an ABIâ€1.00 was significantly associated with an increased risk for HF, independent of traditional HF risk factors, prevalent coronary heart disease, carotid atherosclerosis, and interim myocardial infarction. Low ABI may reflect not only overt atherosclerosis but also pathologic processes in the development of HF beyond epicardial atherosclerotic disease and myocardial infarction alone. A low ABI, as a simple, noninvasive measure, may be a risk marker for HF
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: A pharmacogenomics study from the CHARGE consortium
Background Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. Methods Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk ofmajor cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regressionmodels to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). Results Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction > 5.0Ă10-8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genom
Search for electroweak production of single top quarks in collisions.
We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, OâMalley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. âMacrobeâ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes â the dominant life form on the planet, both now and throughout evolutionary history â will transform some of the philosophy of biologyâs standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology â including biofilm formation, chemotaxis, quorum sensing and gene transfer â that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Helicity of the W Boson in Lepton+Jets ttbar Events
We examine properties of ttbar candidates events in lepton+jets final states
to establish the helicities of the W bosons in t->W+b decays. Our analysis is
based on a direct calculation of a probability that each event corresponds to a
ttbar final state, as a function of the helicity of the W boson. We use the 125
events/pb sample of data collected by the DO experiment during Run I of the
Fermilab Tevatron collider at sqrt{s}=1.8 TeV, and obtain a longitudinal
helicity fraction of F_0=0.56+/-0.31, which is consistent with the prediction
of F_0=0.70 from the standard model
Hard Single Diffraction in pbarp Collisions at root-s = 630 and 1800 GeV
Using the D0 detector, we have studied events produced in proton-antiproton
collisions that contain large forward regions with very little energy
deposition (``rapidity gaps'') and concurrent jet production at center-of-mass
energies of root-s = 630 and 1800 Gev. The fractions of forward and central jet
events associated with such rapidity gaps are measured and compared to
predictions from Monte Carlo models. For hard diffractive candidate events, we
use the calorimeter to extract the fractional momentum loss of the scattered
protons.Comment: 11 pages 4 figures. submitted to PR
- âŠ