664 research outputs found

    The Physical Chemistry Underlying the Assembly and Midpoint Potential Control in a Series of Designed Protein-Maquettes

    Get PDF
    In nature, oxidoreductase proteins are responsible for many enzymatic processes critical to life. These proteins often rely on the presence of non-proteinaceous cofactors to take part in the enzymatic function.  The most common, central to my thesis, is heme B.  Depending on the protein environment, this cofactor can take part in functions as diverse as electron transfer (cytochromes), oxygen transport (hemoglobins), oxygen reduction (oxidases), carbon-hydroxylation (oxygenases), and superoxide production (NADH oxidase). In natural oxidoreductases, determination of the course and rates of heme-protein association, what barriers are encountered, what affinity is achieved, and what are the oxidation-reduction potentials, is critical for understanding the rules of assembly and function of the different activities performed. In the growing field of research attempting to make man-made oxidoreductases, the same understanding is required for progress to be made toward construction of novel enzymes. However, this understanding is still out of reach in natural oxidoreductases because of the immense complexity of natural proteins, while for man-made designs progress has only recently reached a point where an in-depth systematic study can be contemplated. My thesis states: Simple non-natural proteins (maquettes) designed from first principles to ligate heme, can be used to uncover the factors derived from the oligomeric and structural state of related maquette and also derived from porphyrin variants of heme B, that govern rates of  incorporation and ligation of heme B into a maquette. Maquettes are ideal platforms to demonstrate what aspects of a protein govern heme redox potentials, a key parameter underlying the diversity of hemoprotein functions.  The findings from my work provide the first views of heme and maquette assembly: spontaneous, rapid and with high affinity association. They also provide a foundation for understanding what controls redox potentials of the heme and perspective on this control. The work offers insight into similar processes in natural oxidoreductases, but the concepts and principles uncovered in this thesis will be vital in the development of novel functions applied in man-made applications in vitro and in vivo

    The Australian Space Eye: studying the history of galaxy formation with a CubeSat

    Full text link
    The Australian Space Eye is a proposed astronomical telescope based on a 6U CubeSat platform. The Space Eye will exploit the low level of systematic errors achievable with a small space based telescope to enable high accuracy measurements of the optical extragalactic background light and low surface brightness emission around nearby galaxies. This project is also a demonstrator for several technologies with general applicability to astronomical observations from nanosatellites. Space Eye is based around a 90 mm aperture clear aperture all refractive telescope for broadband wide field imaging in the i and z bands.Comment: 19 pages, 14 figures, submitted for publication as Proc. SPIE 9904, 9904-56 (SPIE Astronomical Telescopes & Instrumentation 2016

    Scalable single-photon detection on a photonic chip

    Get PDF
    We developed a scalable method for integrating sub-70-ps-timing-jitter superconducting nanowire single-photon detectors with photonic integrated circuits. We assembled a photonic chip with four integrated detectors and performed the first on-chip g[superscript (2)](τ)-measurements of an entangled-photon source

    On-Chip Detection of Entangled Photons by Scalable Integration of Single-Photon Detectors

    Get PDF
    Photonic integrated circuits (PICs) have emerged as a scalable platform for complex quantum technologies using photonic and atomic systems. A central goal has been to integrate photon-resolving detectors to reduce optical losses, latency, and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps timing jitter, nanosecond-scale reset time, and sensitivity from the visible to the mid-infrared spectrum. However, while single SNSPDs have been incorporated into individual waveguides, the system efficiency of multiple SNSPDs in one photonic circuit has been limited below 0.2% due to low device yield. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of PICs. Ten low-jitter detectors were integrated on one PIC with 100% device yield. With an average system efficiency beyond 10% for multiple SNSPDs on one PIC, we demonstrate high-fidelity on-chip photon correlation measurements of non-classical light.Comment: 27 pages, manuscript including supporting informatio

    Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    Get PDF
    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding

    The chemistry and kinematics of two molecular clouds near Sagittarius A

    Get PDF
    We have analysed the chemical and kinematic properties of the 20 and 50 km s−1 molecular clouds in the Central Molecular Zone of the Milky Way Galaxy, as well as those of the molecular ridge bridging these two clouds. Our work has utilized 37 molecular transitions in the 0.65, 3 and 7-mm wavebands, from the Mopra and NANTEN2 telescopes. The 0.65-mm NANTEN2 data highlights a dense condensation of emission within the western part of the 20 km s−1 cloud, visible in only four other transitions, which are 3-mm H13CN (1–0), H13CO+ (1–0), HNC (1–0) and N2H+ (1–0), suggesting that the condensation is moderately optically thick and cold. We find that while the relative chemical abundances between both clouds are alike in many transitions, suggesting little variation in the chemistry between both clouds; the 20 km s−1, cold cloud is brighter than the 50 km s−1 cloud in shock and high density tracers. The spatial distribution of enhanced emission is widespread in the 20 km s−1 cloud, as shown via line ratio maps. The position velocity diagrams across both clouds indicate that the gas is well mixed. We show that the molecular ridge is most likely part of the 20 km s−1 cloud and that both of them may possibly extend to include the 50 km s−1 cloud, as part of one larger cloud. Furthermore, we expect that the 20 km s−1 cloud is being tidally sheared as a result of the gravitational potential from Sgr A*

    Low-jitter single-photon detector arrays integrated with silicon and aluminum nitride photonic chips

    Get PDF
    We present progress on a scalable scheme for integration of single-photon detectors with silicon and aluminum nitride photonic circuits. We assemble arrays of low-jitter waveguide-integrated single-photon detectors and show up to 24% system detection efficiency
    corecore