20,274 research outputs found

    The structure of thin accretion discs around magnetised stars

    Full text link
    Aims: We determine the steady-state of an axisymmetric thin accretion disc with an internal dynamo around a magnetised star. Methods: Starting from the vertically integrated equations of magnetohydrodynamics we derive a single ordinary differential equation for a thin accretion disc around a massive magnetic dipole and integrate this equation numerically from the outside inwards. Results: Our numerical solution shows that the torque between the star and the accretion disc is dominated by the contribution from the dynamo in the disc. The location of the inner edge of the accretion disc varies between RAR_{\rm A} and 10RA10R_{\rm A} depending mainly on the strength and direction of the magnetic field generated by the dynamo in the discComment: 9 pages, 10 figures. The paper is accepted for publication in Astronomy & Astrophysic

    Warm-Dense Molecular Gas in the ISM of Starbursts, LIRGs and ULIRGs

    Full text link
    The role of star formation in luminous and ultraluminous infrared galaxies is a hotly debated issue: while it is clear that starbursts play a large role in powering the IR luminosity in these galaxies, the relative importance of possible enshrouded AGNs is unknown. It is therefore important to better understand the role of star forming gas in contributing to the infrared luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as an effective tracer for warm-dense molecular gas heated by active star formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals, LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter Telescope on Mt. Graham, Arizona. Our main results are the following: 1. We find a nearly linear relation between the infrared luminosity and warm-dense molecular gas such that the infrared luminosity increases as the warm-dense molecular gas to the power 0.92; We interpret this to be roughly consistent with the recent results of Gao & Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128 L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km s^-1)^-1. If this conversion factor is ~an order of magnitude less, as suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our objects may have significant contributions to the L_IR by dust-enshrouded AGNs.Comment: 15 Pages, 2 figures, Accepted for Publication in Ap

    On the Relation between Solar Activity and Clear-Sky Terrestrial Irradiance

    Full text link
    The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958-2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by about 0.2 +/- 0.1% over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.Comment: 16 pages, 7 figures, in press at Solar Physics; minor changes to the text to match final published versio

    Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi.

    Get PDF
    Anaerobic fungi (Neocallimastigomycota) are emerging non-model hosts for biotechnology due to their wealth of biomass-degrading enzymes, yet tools to engineer these fungi have not yet been established. Here, we show that the anaerobic gut fungi have the most GC depleted genomes among 443 sequenced organisms in the fungal kingdom, which has ramifications for heterologous expression of genes as well as for emerging CRISPR-based genome engineering approaches. Comparative genomic analyses suggest that anaerobic fungi may contain cellular machinery to aid in sexual reproduction, yet a complete mating pathway was not identified. Predicted proteomes of the anaerobic fungi also contain an unusually large fraction of proteins with homopolymeric amino acid runs consisting of five or more identical consecutive amino acids. In particular, threonine runs are especially enriched in anaerobic fungal carbohydrate active enzymes (CAZymes) and this, together with a high abundance of predicted N-glycosylation motifs, suggests that gut fungal CAZymes are heavily glycosylated, which may impact heterologous production of these biotechnologically useful enzymes. Finally, we present a codon optimization strategy to aid in the development of genetic engineering tools tailored to these early-branching anaerobic fungi

    Extreme Star Formation

    Full text link
    Extreme star formation includes star formation in starbursts and regions forming super star clusters. We survey the current problems in our understanding of the star formation process in starbursts and super star clusters - initial mass functions, cluster mass functions, star formation efficiencies, and radiative feedback into molecular clouds - that are critical to our understanding of the formation and survival of large star clusters, topics that will be the drivers of the observations of the next decade.Comment: appeared in "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics and Space Science Proceedings, 2009, ed. H. A. Thronson, M. Stiavelli, and A. G. G. M. Tielens, proceedings of the conference, Astrophysics in the Next Decade, 24-27 September 2007, Tucson, A

    Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies

    Full text link
    New high resolution interferometer data of 10 IR ultraluminous galaxies shows the molecular gas is in rotating nuclear rings or disks with radii 300 to 800 pc. Most of the CO flux comes from a moderate-density, warm, intercloud medium rather than self-gravitating clouds. Gas masses of ~ 5 x 10^9 Msun, 5 times lower than the standard method are derived from a model of the molecular disks. The ratio of molecular gas to dynamical mass, is M_gas/M_dyn ~ 1/6 with a maximum ratio of gas to total mass surface density of 1/3. For the galaxies VIIZw31, Arp193, and IRAS 10565+24, there is good evidence for rotating molecular rings with a central gap. In addition to the rotating rings a new class of star formation region is identified which we call an Extreme Starburst. They have a characteristic size of only 100 pc., about 10^9 Msun of gas and an IR luminosity of ~3 x 10^11 Lsun. Four extreme starbursts are identified in the 3 closest galaxies in the sample Arp220, Arp193 and Mrk273. They are the most prodigious star formation events in the local universe, each representing about 1000 times as many OB stars as 30 Doradus. In Arp220, the CO and 1.3 mm continuum maps show the two ``nuclei'' embedded in a central ring or disk and a fainter structure extending 3 kpc to the east, normal to the nuclear disk. There is no evidence that these sources really are the pre-merger nuclei. They are compact, extreme starburst regions containing 10^9 Msun of dense molecular gas and new stars, but no old stars. Most of the dust emission and HCN emission arises in the two extreme starbursts. The entire bolometric luminosity of Arp~220 comes from starbursts, not an AGN. In Mrk231, the disk geometry shows that the molecular disk cannot be heated by the AGN; the far IR luminosity of Mrk~231 is powered by a starburst, not the AGN. (Abridged)Comment: 97 pages Latex with aasms.sty, including 29 encapsulated Postscript figures. Figs 18 and 23 are GIFs. 31 figures total. Text and higher quality versions of figures available at http://sbastk.ess.sunysb.edu/www/RINGS_ESB_PREPRINT.html To be published in Ap. J., 10 Nov. 199

    An investigation of the solar cycle response of odd-nitrogen in the thermosphere

    Get PDF
    This annual report covers the first year of funding for the study of the solar cycle variations of odd-nitrogen (N((sup 2)D), N((sup 4)S), NO) in the Earth's thermosphere. The study uses the extensive data base generated by the Atmosphere Explorer (AE) satellites, and the Solar Mesosphere Explorer Satellite. The AE data are being used, for the first time, to define the solar variability effect on the odd-nitrogen species through analysis of the emissions at 520 nano-m from N((sup 2)D) and the emission from O(+)((sup 2)P). Additional AE neutral and ion density data are used to help define and quantify the physical processes controlling the variations. The results from the airglow study will be used in the next two years of this study to explain the solar cycle changes in NO measured by the Solar Mesosphere Explorer

    On the Structure of the Bose-Einstein Condensate Ground State

    Full text link
    We construct a macroscopic wave function that describes the Bose-Einstein condensate and weakly excited states, using the su(1,1) structure of the mean-field hamiltonian, and compare this state with the experimental values of second and third order correlation functions.Comment: 10 pages, 2 figure
    • …
    corecore