673 research outputs found

    Solving Elliptic Eigenproblems with Adaptive Multimesh hp-FEM

    Get PDF
    This paper proposes a novel adaptive higher-order nite element (hp-FEM) method for solving elliptic eigenvalue problems, where n eigenpairs are calculated simultaneously, but on individual higher-order nite element meshes. The meshes are automatically hp-rened independently of each other, with the goal to use an optimal mesh sequence for each eigenfunction. The method and the adaptive algorithm are described in detail. Numerical examples clearly demonstrate the superiority of the novel method over the standard approach where all eigenfunctions are approximated on the same nite element mesh

    Excitonic transitions in GaAs-AlxGa1-xAs multiple quantum wells affected by interface roughness

    Get PDF
    Time-resolved photoluminescence has been used to study the effects of interface roughness on excitonic transitions in GaAs-AlxGa1-xAs multiple quantum wells. In addition to the luminescence linewidth broadening and Stokes red shift, the interface roughness also strongly affects the dynamic process of optical transitions so that the excitonic transition peak shifts with delay time. However, the heavy-hole exciton transition has red shifts at short delay times and exhibits a turnover at longer delay times. A maximum shift of about 0.1 meV at a delay time of 4 ns was obtained. We have demonstrated that the peak shift is caused by interface roughness in the quantum wells. Furthermore, the decay of the excitonic transition is found to fit a two-exponential form. Based on a model involving interface roughness and two-exponential decay, we calculated the position of the excitonic transition peak as a function of delay time. Our calculations are consistent with experimental results

    Pancreatic metabolism, blood flow, and β-cell function in obese humans.

    Get PDF
    Context: Glucolipotoxicity is believed to induce pancreatic &beta;-cell dysfunction in obesity. Previously, it has not been possible to study pancreatic metabolism and blood flow in humans. Objective: The objective of the study was to investigate whether pancreatic metabolism and blood flow are altered in obesity using positron emission tomography (PET). In the preclinical part, the method was validated in animals. Design: This was a cross-sectional study. Setting: The study was conducted in a clinical research center. Participants: Human studies consisted of 52 morbidly obese and 25 healthy age-matched control subjects. Validation experiments were done with rodents and pigs. Interventions: PET and magnetic resonance imaging studies using a glucose analog ([18F]fluoro-2-deoxy-d-glucose), a palmitate analog [14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid], and radiowater ([15O]H2O) were performed. In animals, a comparison between ex vivo and in vivo data was performed. Main Outcome Measures: Pancreatic glucose/fatty acid (FA) uptake, fat accumulation, and blood flow parameters of &beta;-cell function were measured. Results: PET proved to be a feasible method to measure pancreatic metabolism. Compared with healthy participants, obese participants had elevated pancreatic FA uptake (P &lt; .0001), more fat accumulation (P = .0001), lowered glucose uptake both during fasting and euglycemic hyperinsulinemia, and blunted blood flow (P &lt; .01) in the pancreas. Blood flow, FA uptake, and fat accumulation were negatively associated with multiple markers of &beta;-cell function. Conclusions: Obesity leads to changes in pancreatic energy metabolism with a substrate shift from glucose to FAs. In morbidly obese humans, impaired pancreatic blood flow may contribute to &beta;-cell dysfunction and in the pathogenesis of type 2 diabetes. &nbsp;</div

    Room temperature ballistic transport in InSb quantum well nanodevices

    Get PDF
    We report the room temperature observation of significant ballistic electron transport in shallow etched four-terminal mesoscopic devices fabricated on an InSb/AlInSb quantum well (QW) heterostructure with a crucial partitioned growth-buffer scheme. Ballistic electron transport is evidenced by a negative bend resistance signature which is quite clearly observed at 295 K and at current densities in excess of 106^{6} A/cm2^{2}. This demonstrates unequivocally that by using effective growth and processing strategies, room temperature ballistic effects can be exploited in InSb/AlInSb QWs at practical device dimensions

    Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Get PDF
    OBJECTIVE: To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS: We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [(11)C]-palmitate and [(18)F]fluoro-6-thia-heptadecanoic acid ([(18)F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS: At baseline, brain global fatty acid uptake derived from [(18)F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [(11)C]-palmitate was 86% higher. Brain fatty acid uptake measured with [(18)F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS: To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction

    Adaptive servoventilation improves cardiac function and respiratory stability

    Get PDF
    Cheyne–Stokes respiration (CSR) in patients with chronic heart failure (CHF) is of major prognostic impact and expresses respiratory instability. Other parameters are daytime pCO2, VE/VCO2-slope during exercise, exertional oscillatory ventilation (EOV), and increased sensitivity of central CO2 receptors. Adaptive servoventilation (ASV) was introduced to specifically treat CSR in CHF. Aim of this study was to investigate ASV effects on CSR, cardiac function, and respiratory stability. A total of 105 patients with CHF (NYHA ≥ II, left ventricular ejection fraction (EF) ≤ 40%) and CSR (apnoea–hypopnoea index ≥ 15/h) met inclusion criteria. According to adherence to ASV treatment (follow-up of 6.7 ± 3.2 months) this group was divided into controls (rejection of ASV treatment or usage <50% of nights possible and/or <4 h/night; n = 59) and ASV (n = 56) adhered patients. In the ASV group, ventilator therapy was able to effectively treat CSR. In contrast to controls, NYHA class, EF, oxygen uptake, 6-min walking distance, and NT-proBNP improved significantly. Moreover, exclusively in these patients pCO2, VE/VCO2-slope during exercise, EOV, and central CO2 receptor sensitivity improved. In CHF patients with CSR, ASV might be able to improve parameters of SDB, cardiac function, and respiratory stability

    Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems

    Full text link
    Thermodynamic properties are presented for four magnetic impurity models describing delocalized fermions scattering from a localized orbital at an energy-dependent rate Γ(ϵ)\Gamma(\epsilon) which vanishes precisely at the Fermi level, ϵ=0\epsilon = 0. Specifically, it is assumed that for small ϵ|\epsilon|, Γ(ϵ)ϵr\Gamma(\epsilon)\propto|\epsilon|^r with r>0r>0. The cases r=1r=1 and r=2r=2 describe dilute magnetic impurities in unconventional superconductors, ``flux phases'' of the two-dimensional electron gas, and zero-gap semiconductors. For the nondegenerate Anderson model, the depression of the low-energy scattering rate suppresses mixed valence in favor of local-moment behavior, and leads to a marked reduction in the exchange coupling on entry to the local-moment regime, with a consequent narrowing of the range of parameters within which the impurity spin becomes Kondo-screened. The relationship between the Anderson model and the exactly screened Kondo model with power-law exchange is examined. The intermediate-coupling fixed point identified in the latter model by Withoff and Fradkin (WF) has clear signatures in the thermodynamic properties and in the local magnetic response of the impurity. The underscreened, impurity-spin-one Kondo model and the overscreened, two-channel Kondo model both exhibit a conditionally stable intermediate-coupling fixed point in addition to unstable fixed points of the WF type. In all four models, the presence or absence of particle-hole symmetry plays a crucial role.Comment: 44 two-column REVTex pages, 31 epsf-embedded EPS figures. MINOR formatting changes. To appear in Phys. Rev.
    corecore