
Solving Elliptic Eigenproblems with Adaptive
Multimesh hp-FEM

Stefano Giania,1,∗, Pavel Solinb,1

aDepartment of Engineering, University of Durham, South Road, Durham DH1 3LE, UK
bDepartment of Mathematics and Statistics, University of Nevada, Reno, USA.

Abstract

This paper proposes a novel adaptive higher-order finite element (hp-FEM)
method for solving elliptic eigenvalue problems, where n eigenpairs are calcu-
lated simultaneously, but on individual higher-order finite element meshes. The
meshes are automatically hp-refined independently of each other, with the goal
to use an optimal mesh sequence for each eigenfunction. The method and the
adaptive algorithm are described in detail. Numerical examples clearly demon-
strate the superiority of the novel method over the standard approach where all
eigenfunctions are approximated on the same finite element mesh.

Keywords: Eigenproblem, automatic adaptivity, higher-order finite element
method, multimesh hp-FEM

1. Introduction

Eigenvalue problems arise in many important areas of science and engi-
neering, including stability [2], acoustics [10], fluid-solid interaction [1], etc.
Therefore, finding efficient numerical methods for their solution is of paramount
importance.

The most common numerical methods used to approximate eigenvalue prob-
lems in PDE form are finite element methods (FEMs) due to their flexibility and
reliability. Unfortunately, eigenvalue problems can be very difficult and plain
FEMs may not be enough to compute good approximations of spectra. Over the
years, many authors have studied adaptive FE methods for eigenvalue problems.
There is now quite a substantial literature on a posteriori error estimation for
eigenvalue problems [4, 9, 18].

Conventional adaptive FE algorithms solve for n eigenpairs simultaneously,
calling a generalized eigensolver after each mesh refinement step [7, 5]. The
calls to the generalized eigensolver on the sequence of meshes are all indepen-
dent making it difficult to track eigenpairs through the sequence of meshes.

∗Corresponding author
Email addresses: stefano.giani@durham.ac.uk (Stefano Giani), solin@unr.edu (Pavel

Solin)

Preprint submitted to Elsevier February 19, 2021

Generalized eigensolvers can change the order of eigenpairs, and for repeated
eigenvalues, they can even return an arbitrary linear combination of eigenfunc-
tions from the corresponding eigenspace for each call. But the most significant
limitation of this approach is the fact that n different functions are approx-
imated on the same finite element mesh. Namely, local refinements required
to efficiently approximate one eigenfunction may not be needed at all for the
remaining n − 1 eigenfunctions. In the end, none of the eigenfunctions is ap-
proximated in an optimal way, because overall an unnecessarily large number
of degrees of freedom is used.

The present work addresses this problem by approximating each eigenfunc-
tion on an individual higher-order finite element mesh which moreover is locally
refined independently of each other, thus minimizing the number of degrees of
freedom per eigenfunction. This is made possible by using the results in [14]
where the problems associated with repeated calls to the generalized eigensolver
were circumvented by only calling the generalized eigensolver once at the begin-
ning of the computation, and then employing automatic hp-adaptivity combined
with a Newton-like iterative method to pursue a single eigenpair on a sequence
of locally refined hp-meshes.

The multimesh hp-FEM method was first introduced by Solin et al. in
the context of multiphysics PDE problems [13, 3, 11]. These problems involve
multiple physical fields which often exhibit vastly different behaviours. For in-
stance, where one field is smooth (temperature), another one can have a singular
gradient (displacement), singular values (electric or magnetic field, stress), or
a boundary layer (flow velocity). Naturally, approximating all fields on the
same finite element mesh would lead to a strongly over-refined mesh, for the
same reasons as when using a single mesh to approximate n different eigen-
functions. Therefore, the multimesh hp-FEM approximates each physical field
on an individual higher-order finite element mesh. These meshes are automat-
ically adapted independently of each other, with the goal to approximate each
physical field using as few degrees of freedom as possible. These meshes have
a common, often extremely coarse, ancestor mesh called master mesh [13]. In
most cases, the master mesh is not used for the actual discretization, but it helps
to efficiently navigate a tree of locally refined meshes during automatic adaptiv-
ity. The corresponding algorithms are available in the open-source higher-order
finite element library Hermes [16].

The methods presented in this work are developed starting from the results
and methods in [14, 15]. The main contribution in those papers is the iterative
solvers able to track multiple eigenpairs through the sequence of meshes created
by the hp-adaptivity. This reduces the number of iterations in the iterative
solvers and increases the convergence speed especially in case of multiple eigen-
values. The two solvers presented in [14, 15] are based on Picard’s method and
Newton’s method that in the present work are modified to incorporate multi-
mesh. The main difference between [14] and [15] is that in the former paper
symmetric eigenvalue problems are studied and in the latter non-symmetric
eigenvalue problems are considered. The limitation of the methods in both
[14, 15] is that only one sequence of adaptively refined meshes can be used to

2

approximate multiple eigenpairs. This is what prevents the methods to achieve
even better converge rates in terms of DOF. This limitation is overcome in the
present work.

2. Model Problem

To illustrate the advantages of the multimesh approach for solving eigenvalue
problems, a well-known elliptic model problem is used:

−∆u = λu in Ω, u = 0 on ∂Ω . (1)

This problem in a bounded polygonal domain Ω has a positive and discrete
spectrum. We denote the eigenvalues of (1) by

0 < λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ . . . ,

with possible repetition in case of repeated eigenvalues.

Nomenclature

T c
j,n coarse mesh for eigenvalue j of refinement n
Scj,n(T c

j,n) coarse FE space on T c
j,n

Tj,n mesh for eigenvalue j of refinement n
Sj,n(Tj,n) FE space on Tj,n
uj,n eigenfunction computed on Sj,n(Tj,n)
λj,n eigenvalue computed on Sj,n(Tj,n)

P j,n
i,m extension operator from Si,m(Ti,m) onto Sj,n(Tj,n).

Rj,n
i,m restriction operator from Si,m(Ti,m) onto Sj,n(Tj,n).

Tn union mesh of all meshes Tj,n for all j
Sn(Tn) union FE space of all spaces Sj,n(Tj,n) for all j
Pn
i,m extension operator from Si,m(Ti,m) onto Sn(Tn).
Ri,m

n restriction operator from Sn(Tn) onto Si,m(Ti,m).
Aj,n stiffness matrix for the space Sj,n(Tj,n)
An stiffness matrix for the space Sn(Tn)
Bj,n mass matrix for the space Sj,n(Tj,n)
Bn mass matrix for the space Sn(Tn)
um
j,n vector of approximated eigenfunction uj,n of iteration m
λmj,n approximation of λj,n of iteration m

3. Theoretical Framework

Applying the standard FEM framework to Problem (1), we denote by L2(Ω)
the usual space of square-integrable real-valued functions equipped with the
standard norm

‖f‖0 :=

(∫
Ω

|f |2
) 1

2

, (2)

3

and by H1(Ω) the usual space of functions in L2(Ω) with square-integrable weak
first partial derivatives. We denote by H1

0 (Ω) the subspace of H1(Ω) of functions
with zero trace on the boundary ∂Ω. The weak formulation of Problem (1) reads:

Find n eigenpairs of the form (λj , uj) ∈ R×H1
0 (Ω) such that

a(uj , v) = λj b(uj , v), for all v ∈ H1
0 (Ω)

‖uj‖0 = 1

}
(3)

where

a(u, v) :=

∫
Ω

∇u · ∇v, (4)

and

b(u, v) :=

∫
Ω

uv. (5)

In this work, all meshes on Ω are assumed to be irregular with an arbitrary-
level of hanging nodes [12]. For brevity, only 2D domains meshed with triangular
elements are considered, but all the results also apply to 3D problems and to
other types of finite elements such as quadrilaterals, prisms, bricks, etc.

Meshes on Ω are denoted by T with subscripts and occasionally superscripts.
Higher-order finite element spaces constructed on a mesh T are denoted by
S(T) ⊂ H1

0 (Ω), also with subscripts and occasionally superscripts. Automatic
hp-adaptivity is used extensively in this work, therefore different orders of poly-
nomials may be used on different elements in the same mesh. Adaptivity creates
a sequence of meshes and finite element spaces, and to identify uniquely each
mesh and finite element space in the sequence, a subscript n is used. Also, the
key advantage in using multimesh techniques is that each eigenpair is computed
on a different mesh with its own finite element space. Considering the eigenpair
(λj , uj) of Problem (1) and index j, the finite element space used to approxi-
mate it is denoted by Sj,n(Tj,n), where the subscript n refers to the position of
the finite element space in the sequence created by the adaptivity process. Sim-
ilarly, the computed eigenpair is denoted by (λj,n, uj,n). Therefore, the discrete
version of (3) reads:

Find n eigenpairs of the form (λj,n, uj,n) ∈ R× Sj,n(Tj,n) such that

a(ujn, vn) = λj,n b(uj,n, vn), for all vn ∈ Sj,n(Tj,n)
‖uj,n‖0 = 1

}
(6)

In the rest of the work, we apply the multimesh hp-FEM to compute several
eigenpairs simultaneously but on different meshes. In some of the steps in the
algorithms below, we need the union finite element spaces: Given a set of finite
element spaces Sj,n(Tj,n) approximating different eigenpairs and from the same
adaptive step n, the union finite element space Sn(Tn) is constructed in such
a way that each Sj,n(Tj,n) in the set is contained in it. This also implies that
the mesh Tn is the union mesh of all meshes Tj,n in the set, i.e. Tn can be

4

constructed starting from any of the Tj,n meshes by proper refinement. The
union finite element space Sn(Tn) can always be constructed because all locally
refined meshes in the set originate from a common coarse master mesh [13].

4. Adaptive Multimesh hp-FEM Algorithm

In this section the hp-adaptive multimesh algorithm, Algorithm 3, is intro-
duced. Due to the iterative nature of the algorithm, iterative solvers are prefer-
able. In [15, 14], iterative solvers based on Picard’s and Newton’s method for
eigenvalue problems are presented. These methods are adapted in the following
to be used with the multimesh technique.

4.1. Picard’s Method

The Picard’s method is a simple iterative method based on solving a lin-
ear system multiple times with the right-hand side computed in the previous
iteration. When applied to eigenvalue problems, the nature of the method is
not changed at all, just the right-hand side is now depending on the eigenvalue.
Problem (6) can be reformulated in matrix form as:

Find n eigenpairs of the form (λj,n,uj,n) ∈ R×RN , where N is the dimension
of Sj,n(Tj,n), such that

Aj,nuj,n = λj,nBj,nuj,n ,
ut
j,nBj,nuj,n = 1

}
(7)

where the entries of the matrices Aj,n and Bj,n are

(Aj,n)k,p := a(φp, φk) , (Bj,n)k,p := b(φp, φk) ,

where φi are the basis functions spanning Sj,n(Tj,n).
In [14], we presented the implementation of the Picard’s method solving (7).
One of the main drawbacks of method in [14] is the fact that it always tends

to convergence to the eigenpair with the smallest eigenvalue. This is annoying in
the multimesh context because our aim is to be able to control which eigenpair
is computed on each mesh. This problem is solved introducing an orthogonal-
ization step to force the algorithm to converge to the correct eigenpair.

The Picard’s method with orthogonalization, see Algorithm 1, takes as argu-
ments the matrices Aj,n and Bj,n of (7), the matrices An and Bn constructed
using the union finite element space Sn(Tn) from all spaces Si,n(Ti,n) with
i = 1, . . . , j, an initial guess ũj,n for the eigenfunction, the tolerances AbsTol
and Tol and it also takes the j − 1 approximate eigenfunctions u1,n, . . . , uj−1,n.
Then it returns the approximate eigenpair (λj,n, uj,n). Because we use this it-
erative method on a sequence of adaptively refined meshes, we normally set as
initial guess the projection on the refined mesh of the eigenfunction of interest
uj,n−1 computed on the previous mesh in the adapted sequence,.

5

Algorithm 1 Multimesh Picard’s method with orthogonalization

(λj,n, uj,n) := MultimeshPicardOrtho(Aj,n,Bj,n,An,Bn, ũj,n, {ui,n}j−1
i=1 ,

Tol,AbsTol)
u1
j,n := ũj,n

λ1
j,n :=

(u1
j,n)tAj,nu

1
j,n

(u1
j,n)tBj,nu1

j,n

m = 1
repeat

um+1
j,n := A−1

j,nλ
m
j,nBj,nu

m
j,n

for i = 1 to j − 1 do
um+1
j,n := um+1

j,n −Rj,n
n ((Pn

i,nu
t
i,nBnP

n
j,nu

m+1
j,n)Pn

i,nui,n)
. Orthogonalization

end for

um+1
j,n =

um+1
j,n

((um+1
j,n)tBj,nu

m+1
j,n)1/2

. Normalization

λm+1
j,n :=

(um+1
j,n)tAj,nu

m+1
j,n

(um+1
j,n)tBj,nu

m+1
j,n

m := m+ 1

until
‖um

j,n−u
m−1
j,n ‖1

‖um−1
j,n ‖1

< Tol or |λmj,n − λ
m−1
j,n | < AbsTol

uj,n := um
j,n

λj,n := λmj,n

The orthogonalization step in Algorithm 1 differs from the one introduced in
[14] because here the multimesh framework has to be taken into account. The
computed eigenfunctions ui,n are computed on different meshes, therefore to
compare them appropriate restriction and projection operators have to be used.
The orthogonalization takes place in the union finite element space Sn(Tn) which
is finer than any of the spaces where ui,n belong. The projection of any eigen-
function ui,n onto Sn(Tn) can be done without introducing any approximation
error. The prolongation operator from a space Si,n(Ti,n) onto Sn(Tn) is denoted
by Pn

i,n. Similarly, the restriction operator from Sn(Tn) to the space Si,n(Ti,n)

is denoted by Ri,n
n .

4.2. Newton’s Method

The second iterative method used in this work is based on the Newton’s
method presented in [14].

As in the case of the Picard’s method, also the Newton’s method needs an or-
thogonalization step compatible with the multimesh approach, see Algorithm 2.

6

Algorithm 2 Multimesh Newton’s method with orthogonalization

(λj,n, uj,n) := MultimeshNewtonOrtho(Aj,n,Bj,n,An,Bn, ũj,n, , {ui,n}j−1
i=1 ,

Tol,AbsTol)
u1
j,n := ũj,n

λ1
j,n :=

(u1
j,n)tAj,nu

1
j,n

(u1
j,n)tBj,nu1

j,n

m = 1
repeat

Solve Jf (um
j,n, λ

m
j,n) · h̃ = −f(um

j,n, λ
m
j,n)

um+1
j,n := um

j,n + h

λm+1
j,n := λmj,n + δ

for i = 1 to j − 1 do
um+1
j,n := um+1

j,n −Rj,n
n ((Pn

i,nu
t
i,nBnP

n
j,nu

m+1
j,n)Pn

i,nui,n)
. Orthogonalization

end for

um+1
j,n =

um+1
j,n

((um+1
j,n)tBj,nu

m+1
j,n)1/2

. Normalization

λm+1
j,n :=

(um+1
j,n)tAj,nu

m+1
j,n

(um+1
j,n)tBj,nu

m+1
j,n

m := m+ 1

until
‖um

j,n−u
m−1
j,n ‖1

‖um−1
j,n ‖1

< Tol or |λmj,n − λ
m−1
j,n | < AbsTol

uj,n := um
j,n

λj,n := λmj,n

4.3. Automatic Adaptivity

In this section we discuss the hp-adaptive multimesh algorithm, Algorithm 3.
The purpose of this algorithm is to compute a selection of eigenpairs using mul-
timesh hp-FEM combined with automatic hp-adaptivity, meaning that each
eigenpair has its own sequence of adaptively refined hp-meshes. To start the al-
gorithm, the indices of the eigenpairs of interest are inserted in the set I and the
initial finite element space Sc0(T c

0) is passed to the algorithm. The space Sc0(T c
0)

is the starting space for all eigenpairs. Algorithm 3 computes all eigenpairs up
to the level of accuracy defined in Accuracy. Because different eigenpairs can
require different numbers of adaptive steps to reach the specified accuracy, the
algorithm removes the indices of the eigenpairs one-by-one as soon as they are
approximated well enough, see line 27 in Algorithm 3. The algorithm stops only
when I is empty, see line 32 in Algorithm 3. In this way no mesh is adapted
more than necessary. As explained in Sections 4.1 and 4.2, the solvers need ini-
tial guesses for the eigenpairs to compute. In line 2 in Algorithm 3, a generalized
eigensolver is called to produce initial guesses for the solvers called in lines 17
and 19. The generalised eigensolver used in the simulations is the eigenvalue
solver in PySparse [6]. This solver is not designed for multiple meshes, but at
the beginning of Algorithm 3 all eigenpairs are computed on Sc0(T c

0), therefore a

7

standard eigensolver is more than enough. The finite element spaces are refined
using an algorithm from [17] that is an analogy to embedded higher-order ODE
methods, see line 23-25. Such algorithm constructs an approximation pair of
eigenfunctions with different orders of accuracy and uses their difference as an
a-posteriori error estimator to guide hp-adaptivity.

As described in detail in [17], automatic hp-adaptivity is much more efficient
than standard h-adaptivity. But on the other hand, it requires much more
information about the error. An elementwise-constant error estimate is not
enough to guide it. One needs an error estimate which provides information
about the shape of the error in every element. This is exactly what the difference
between eigenfunctions calculated with different orders of accuracy is used for.
In every element the adaptivity algorithm considers a number of competitive
hp-refinements, and chooses the one which, roughly speaking, minimizes the
projection error while also not adding too many new degrees of freedom.

8

Algorithm 3 Adaptive Multimesh hp-FEM Algorithm

1: Create the set I containing the indices of the eigenvalues to target and
denote by Imax the maximum value in I.

2: Let T c
0 be an initial coarse mesh and Sc0(T c

0) the corresponding finite element
space. A generalized eigensolver is called one time only, to obtain solution
pairs (λcj,0, u

c
j,0), for j = 1, . . . , Imax, on the initial coarse mesh T c

0 .
3: Copies Scj,0(T c

j,0) of Sc0(T c
0) are made for each value of j from 1 to Imax.

4: Set k := 0
5: repeat
6: Construct fine meshes Tj,k and spaces Sj,k(Tj,k), for j = 1, . . . , Imax,

by refining all elements in space Scj,k(T c
j,k) and increasing their polynomial

degrees by one.
7: Assemble Ak and Bk, the stiffness and mass matrices on the union mesh
Tk and union space Sk(Tk), Sk(Tk) is the union of all Sj,k(Tj,k), for j =
1, . . . , Imax, respectively.

8: for j from 1 to Imax do
9: if k == 0 then

10: Project the approximation ucj,0 onto the space Sj,0(Tj,0). The

projection is denoted by ũj,0 := P j,0
c ucj,0. Since the finite element spaces

Scj,0(T c
j,0) and Sj,0(Tj,0) are embedded, there is no projection error.

11: else
12: Project the approximation uj,k−1 onto the space Sj,k(Tj,k). The

projection is denoted by ũj,k := P j,k
j,k−1uj,k−1.

13: end if
14: Assemble Aj,k and Bj,k, the stiffness and mass matrices on the spaces
Sj,k(Tj,k), respectively.

15: Calculate an initial guess λ̃j,k for the eigenvalue on the space
Sj,k(Tj,k) using the relation

λ̃j,k =
(ũj,k)TAj,kũj,k
(ũj,k)TBj,kũj,k

.

The pair (λ̃j,k, ũj,k) is not a solution to the generalized eigenproblem
on the space Sj,k(Tj,k), but it is used as an initial guess.

9

16: if Picard’s method is selected then
17: (λj,k, uj,k) := MultimeshPicardOrtho(Aj,k,Bj,k,Ak,Bk, ũj,k, {ui,k}j−1

i=1 ,Tol,AbsTol)
18: else
19: (λj,k, uj,k) := MultimeshNewtonOrtho(Aj,k,Bj,k,Ak,Bk, ũj,k, {ui,k}j−1

i=1 ,Tol,AbsTol)
20: end if
21: if j ∈ I then
22: Project the approximation uj,k back to the coarse space Scj,k(T c

j,k)

to obtain P j,k
c uj,k.

23: Calculate the a-posteriori error estimate ej,k,

ej,k = uj,k − P j,k
c uj,k.

Note: ej,k is a function, not a number.
24: if ‖ej,k‖0 > Accuracy then
25: Use ej,k to guide one step of automatic hp-adaptivity [17]

that yields a new coarse Scj,k+1(T c
j,k+1).

26: else
27: Remove j from I.
28: end if
29: end if
30: end for
31: Update k := k + 1
32: until I is empty.

5. Numerical Results

In this section we compare the adaptive multimesh hp-FEM method, Al-
gorithm 3, with a standard adaptive hp-FEM method, Algorithm 6, where
all eigenfunctions are approximated on the same locally refined automatically
adapted mesh.

The structure of Algorithm 6 is similar to the structure of Algorithm 3 except
for two important features: there is no multimesh, all eigenpairs are computed
on the same adapted mesh, and the mesh is adapted using information from the
a-posteriori error estimates from all considered eigenpairs. As in Algorithm 3,
both Picard’s and Newton’s method solvers are available in Algorithm 6, see
Algorithm 4 and Algorithm 5 respectively. Both methods use the orthogonality
technique to keep the eigenpairs well separated.

10

Algorithm 4 Picard’s method with orthogonalization

(λj,n, uj,n) := PicardOrtho(An,Bn, ũj,n, {ui,n}j−1
i=1 ,Tol,AbsTol)

u1
j,n := ũj,n

λ1
j,n :=

(u1
j,n)tAnu

1
j,n

(u1
j,n)tBnu1

j,n

m = 1
repeat

um+1
j,n := A−1

n λmj,nBnu
m
j,n

for i = 1 to j − 1 do
um+1
j,n := um+1

j,n − (uti,nBnu
m+1
j,n)ui,n

. Orthogonalization
end for

um+1
j,n =

um+1
j,n

((um+1
j,n)tBnu

m+1
j,n)1/2

. Normalization

λm+1
j,n :=

(um+1
j,n)tAnu

m+1
j,n

(um+1
j,n)tBnu

m+1
j,n

m := m+ 1

until
‖um

j,n−u
m−1
j,n ‖1

‖um−1
j,n ‖1

< Tol or |λmj,n − λ
m−1
j,n | < AbsTol

uj,n := um
j,n

λj,n := λmj,n

11

Algorithm 5 Newton’s method with orthogonalization

(λj,n, uj,n) := NewtonOrtho(An,Bn, ũj,n, {ui,n}j−1
i=1 ,Tol,AbsTol)

u1
j,n := ũj,n

λ1
j,n :=

(u1
j,n)tAnu

1
j,n

(u1
j,n)tBnu1

j,n

m = 1
repeat

Solve Jf (um
j,n, λ

m
j,n) · h̃ = −f(um

j,n, λ
m
j,n)

um+1
j,n := um

j,n + h

λm+1
j,n := λmj,n + δ

for i = 1 to j − 1 do
um+1
j,n := um+1

j,n − (uti,nBnu
m+1
j,n)ui,n

. Orthogonalization
end for

um+1
j,n =

um+1
j,n

((um+1
j,n)tBnu

m+1
j,n)1/2

. Normalization

λm+1
j,n :=

(um+1
j,n)tAnu

m+1
j,n

(um+1
j,n)tBnu

m+1
j,n

m := m+ 1

until
‖um

j,n−u
m−1
j,n ‖1

‖um−1
j,n ‖1

< Tol or |λmj,n − λ
m−1
j,n | < AbsTol

uj,n := um
j,n

λj,n := λmj,n

12

Algorithm 6 Standard (Single-Mesh) Adaptive hp-FEM Algorithm

1: Create the set I containing the indices of the eigenvalues to target and
denote by Imax the maximum value in I.

2: Let T c
0 be an initial coarse mesh and Sc0(T c

0) the corresponding finite element
space. A generalized eigensolver is called one time only, to obtain a solution
pairs (λcj,0, u

c
j,0), for j = 1, . . . , Imax, on the initial coarse mesh T c

0 .
3: Set k := 0
4: repeat
5: Construct fine mesh Tk and space Sk(Tk), by refining all elements in

space Sck(T c
k) and moreover increasing their polynomial degrees by one.

6: Assemble Ak and Bk, the stiffness and mass matrices on the mesh Tk
and space Sk(Tk), respectively.

7: for j from 1 to jmax do
8: if k == 0 then
9: Project the approximation ucj,0 to the space S0(Tj,0). The pro-

jection is denoted by ũj,0 := P 0
c u

c
j,0. Since the finite element spaces Sc0(T c

0)
and S0(T0) are embedded, there is no projection error.

10: else
11: Project the approximation uj,k−1 to the space Sk(Tk). The pro-

jection is denoted by ũj,k := P k
k−1uj,k−1.

12: end if
13: Calculate an initial guess λ̃j,k for the eigenvalue on the space Sk(Tk)

using the relation

λ̃j,k =
(ũj,k)TAkũj,k
(ũj,k)TBkũj,k

.

The pair (λ̃j,k, ũj,k) is not a solution to the generalized eigenproblem
on the space Sk(Tk), but it is used as an initial guess.

13

14: if Picard’s method is selected then
15: (λj,k, uj,k) := PicardOrtho(Ak,Bk, ũj,k, {ui,k}j−1

i=1 ,Tol,AbsTol)
16: else
17: (λj,k, uj,k) := NewtonOrtho(Ak,Bk, ũj,k, {ui,k}j−1

i=1 ,Tol,AbsTol)
18: end if
19: end for
20: for j ∈ I do
21: Project the approximation uj,k back to the coarse space Sck(T c

k) to
obtain P k

c uj,k.
22: Calculate the a-posteriori error estimate ej,k,

ej,k = uj,k − P k
c uj,k.

Note: ej,k is a function, not a number.
23: end for
24: Use all ‖ej,k‖0, for all j ∈ I to automatically perform hp-adaptivity [17]

that yields a new coarse Sck+1(T c
k+1)

25: Update k := k + 1
26: until All ‖ej,k‖0 < Accuracy for all j ∈ I.

5.1. L-shaped domain: the simple eigenvalues case

We start considering Problem (1) on a L-shaped domain. This is a very
common test case used very often in literature because the re-entering corner
introduces additional numerical difficulties. It is well known that eigenfunctions
for this problem may lack in regularity, i.e. regularity less than H2(Ω). The
lack of regularity is addressed with hp−adaptivity imposing a larger proportion
of h−refinement and less p−refinement. Concentration of h−refinement where
the eigenfunctions are less regular, i.e. around the re-entering corner for the
L-shaped domain, regains some of the convergence speed lost by the lack of
regularity. The spectrum of the L-shaped domain contains eigenfunctions with
different regularity and some of them are smooth, i.e. regularity at least in
H2(Ω). For such eigenfunctions, p−refinement is preferable to h−refinement.
Clearly, this is the dilemma facing standard hp−adaptive methods on this prob-
lem. If eigenfunctions with different level of regularity have to be computed
just adapting one single common mesh, the mesh is not optimal for all of them.
Higher p-elements, which are favourable for more regular eigenfunctions, do not
help very much with irregular eigenfunctions. On the other hand, h−refinement
concentrated around the re-entering corner which is necessary for irregular eigen-
functions has very little use for regular eigenfunctions. With multimesh, this
dilemma is avoided because each mesh is adapted considering only one eigen-
function.

A good example of what has just been explained, can be seen considering the
first two smallest eigenpairs of the L-shaped domain problem, see Figure 1, both
of them are simple eigenpairs. The first eigenfunction is an irregular one with
a lack of regularity at the re-entering corner. The second one is more regular

14

but still not completely smooth, see [8] for a detailed analysis on the regularity
of the eigenfunctions for the L-shaped domain. The difference in the regular-
ity between the first two eigenfunctions is noticed by the adaptive procedure
and exploited using different level of refinement for h and p. In Figure 1, the
adapted meshes for the two methods for an approximation error of about 0.1%
are compared. Comparing Figures 1(c) and 1(d) is clear that in Figure 1(c)
the adaptivity focused heavily with h−refinement around the re-entering cor-
ner where the singularity in the gradient of the solution exists. In contrast, in
Figure 1(d) only p-refinement is applied which is more efficient for more regular
solutions. The meshes in Figure 1(e,f) are computed by the Single-Mesh method
trying to resolve both eigenfunctions, therefore they are the same mesh. The
result is a mix of the previous two meshes with heavily h−refinement around the
re-entering corner and more spread high order elements across the entire domain.
Numerically this mesh is not as good as the meshes in Figures 1(c) and 1(d),
this can be seen from the convergence curves in Figure 2.

15

(a) (b)

(c) DOF: 7179 (d) DOF: 3847

(e) DOF: 7992 (f) DOF: 7992

Figure 1: Corresponding eigenfunctions to the first two smallest eigenvalues of the L-shaped
domain and relative meshes. The first eigenfunction (a) is non-regular. The second eigenfunc-
tion (b) is regular. Adapted meshes for the multimesh and the Single-Mesh methods for an
accuracy of about 0.1%. Meshes (c,d) computed using the multimesh method and adapted
for each of the two eigenfunctions. Meshes (e,f) computed using the standard method and
adapted simultaneously for the two eigenfunctions. For each mesh, the number of DOF is
stated.

The differences in convergence rates between the multimesh hp−adaptive
method, Algorithm 3, and the standard hp−adaptive method, Algorithm 6, are
presented in Figure 2. For this comparison the Picard’s solver has been used for
both algorithm with relative tolerance of 1e−8 and absolute tolerance of 1e−9.
In Figure 2, the error is relative and given in percentage and is computed using
the automatic hp−adaptive technique in [17]. Algorithm 3 is used to compute

16

simultaneously the first two eigenfunctions. Algorithm 6 is used a first time
to also compute simultaneously the first two eigenfunctions, the corresponding
curves in Figure 2 are marked as “Single-Mesh”. Then, Algorithm 6 is also run
two more times to compute each eigenfunction in isolation, the corresponding
curves in Figure 2 are marked as “Single-Eigenpair”. First, it is interesting
to notice that the convergence curves of Algorithm 3 overlap exactly the con-
vergence curves of Algorithm 6 when is used to compute each eigenfunction in
isolation. This suggests that the multimesh technique does not deteriorate at all
the efficiency of the underlying hp−adaptive method and each mesh is adapted
as well as possible for each eigenfunction. Secondly, the convergence curves of
Algorithm 3 have completely independent number of DOF, this is highlight-
ing the nature of the multimesh technology that allow for several meshes to be
adapted independently. In fact, the mesh for the first eigenfunction is adapted
11 times while the mesh for the second eigenfunction is adapted only 6 times
to reach the accuracy of at least 0.5%. Thanks to the multimesh freedom, each
eigenfunction can be computed only up to the required accuracy without wasting
extra computational time. Thirdly, it is worth to notice that the convergence
curves of Algorithm 6, when is used to compute both eigenfunctions simulta-
neously, i.e. “Single-Mesh” curves, are always above the convergence curves of
Algorithm 3 showing the higher efficiency in term of number of DOF of the
multimesh method. Finally, it is also interesting the difference in convergence
speed between the first and the second eigenpair, regardless of the method used
for the computation, this is due to the difference in the regularity of the eigen-
pairs. In general, smoother a function is less DOF are needed for the adaptive
process to well approximate it.

17

Figure 2: Convergence plot for the first two eigenfunctions of the L-shaped domain.

In Table 1, a subsection of the results presented in Figure 2 are also pre-
sented. In tabular form it is easier to appreciate the higher efficiency of the
multimesh method in terms of number of DOF. Algorithm 3 reaches the re-
quested accuracy of 0.5% far before the Single-Mesh method.

18

Multimesh Single-Mesh
Eigenpair 1 Eigenpair 2

Step DOF Err.(%) DOF Err.(%) DOF e1,k(%) e2,k(%)
1 529 11.397 529 12.435 529 11.397 12.435
2 622 8.876 673 7.738 663 11.402 11.733
3 859 6.785 1142 2.371 1060 9.808 9.715
4 1358 3.969 1352 1.082 1696 3.515 2.298
5 1571 3.385 1804 0.548 2190 2.442 1.482
6 1961 2.080 2360 0.216 2763 1.413 1.214
7 2287 1.681 3539 0.955 0.668
8 2810 1.131 4286 0.631 0.379
9 3384 0.779 4936 0.450 0.190
10 4004 0.529 5491 0.326 0.162
11 4683 0.364

Table 1: Comparison between Algorithm 3 and Algorithm 6 in terms of DOF and accuracy.

Just for comparison, the L-shaped domain example is solved using only h-
refinement which is a popular refinement technique in literature [9, 18] easier
to implement than hp-refinement. However, the difference in performances is
dramatic. In Figure 3, the convergence plots for the same methods used in
Figure 2 allowing only for h-refinement and with constant order of polynomials
equal to 3 everywhere in the meshes. Cubic order elements are used because the
results using lower-order elements, i.e. linear or quadratic, are so poor that the
comparison with hp-refinement would not be meaningful. Figures 2 and 3 are
both plotted in semilog scale for easier comparison. It is clear the inefficiency
of h-refinement compared to hp-refinement looking at the range of values along
the axes, h-refinement achieves much worse accuracy using many more degrees
of freedom. For this reason, only hp-refinement is considered in the rest of the
paper.

19

Figure 3: Convergence plot for the first two eigenfunctions of the L-shaped domain using
h-refinement only.

In Figure 4 the adapted meshes using only h-refinement for the multimesh
method and approximating the eigenfunctions to an accuracy around 0.1% are
presented. The same accuracy is reached using hp-refinement on the meshes in
Figure 1. The difference in number of degrees of freedom is enormous, confirming
the superiority of hp-refinement.

20

(a) DOF: 68956 (b) DOF: 62239

Figure 4: Adapted meshes for the multimesh for an accuracy of about 0.1% using only h-
refinement. For each mesh, the number of DOF is stated.

5.2. Square-hole domain: the multiple eigenvalues case

We consider now Problem (1) on a square domain with a centred square hole.
Due to the presence of four re-entering corners, also the spectrum of this problem
contains non-regular solutions. This case is particularly interesting because the
second and the third eigenvalues form a multiple eigenvalue of multiplicity two.
For this reason, we are going to consider the first three smallest eigenvalues of
the problem, see Figure 5(a-c), all of them are non-regular. In Figure 5(d-f),
the meshes computed by the Single-Mesh method trying to resolve all three
eigenfunctions at the same time. This forces the method to use the same mesh
for all eigenpairs, therefore all the meshes in Figure 5(d-f) are identical.

21

(a)

(b) (c)

(d) DOF: 12827

(e) DOF: 12827 (f) DOF: 12827

Figure 5: First three eigenfunctions of the square-hole domain and final meshes for the Single-
Mesh method. The first eigenfunction (a) is a simple one. The second (b) and the third (c)
eigenfunctions belong to an eigenvalue of multiplicity two. The meshes for the first eigen-
function (d), for the second (e) and for the third (f). For each mesh, the number of DOF is
stated.

22

In Figure 6, the final meshes for Algorithm 3 are presented. Since the meshes
have been refined independently, different refinement patterns are visible. The
first eigenfunction has singularities in the gradient in all four corners, in Fig-
ure 6(a) is clearly visible heavily h−refinement around all four corners. The
second and the third eigenfunctions are related by a rotation-symmetry since
they belong to the same eigenspace. Due to the rotation, they have singularities
in the gradient in distinct corners. Looking at Figures 6(b) and 6(c) it is clear
that the re-entering corners targeted by h−refinement correspond to the corners
where each eigenfunction has lack of regularity. It is important to notice that
DOF numbers in Figure 5 and Figure 6 cannot be compared directly, since the
accuracy is different, see Figure 7. Mesh (a) in Figure 6 has 14892 DOF and
the accuracy is 0.457%. For comparison, mesh (a) in Figure 5 has only 12827
DOF but the accuracy is 1.06% which is far worse.

(a) DOF: 14892

(b) DOF: 9948 (c) DOF: 8159

Figure 6: Final adapted meshes for the multimesh methods for the first (a), second (b) and
third (c) eigenvalues. For each mesh, the number of DOF is stated.

In Figure 7, the convergence rates of the multimesh hp−adaptive method,
Algorithm 3, and of the standard hp−adaptive method, Algorithm 6, are com-
pared. As in the previous case, the curves marked as “Single-Mesh” are com-
puted using Algorithm 6 on all three eigenfunctions simultaneously. The curves
marked as “Single-Eigenpair” are computed using Algorithm 6 on each of the
three eigenfunctions individually. Again we can see that the curves produced by
Algorithm 3 overlap exactly the curves computed by Algorithm 6 on each of the

23

three eigenfunctions individually. Also, the curves computed by Algorithm 6 on
all three eigenfunctions simultaneously are always above the curves computed
by Algorithm 3. Finally, as in Figure 2, the second and third eigenpairs converge
faster than the first one. This is due to the difference in the regularity between
the first eigenpair and the other two. The second and the third eigenvectors
exhibit only two singularities each at the re-entering corners where the first one
has four singularities. There is also a slight difference between the convergence
curves for the second and third eigenpair. This discrepancy is not due to a
difference in the regularity since these two eigenpairs belong to the same eigen-
value, but to properties of the meshes. The initial mesh is a structured mesh
with all the inclined edges oriented in the same direction. The adaptivity pro-
cess preserves such orientation. It is natural that such structure in the meshes
is more favourable to approximate one of the two eigenpairs.

Figure 7: Convergence plot for the first three smallest eigenfunctions of the square-hole do-
main.

In Table 2, the same results presented in Figure 7 are also presented. In
tabular form it is easier to appreciate the higher efficiency of the multimesh
method in terms of number of DOF. Algorithm 3 reach the requested accuracy
of 0.5% in far less adaptive steps compared to Algorithm 6. Not even after 26

24

adaptive steps, Algorithm 6 has reached the requested accuracy.

Multimesh Standard Reference
Eig. 1 Eig. 2 Eig. 3

Step DOF Err. DOF Err. DOF Err. DOF e1,k e2,k e3,k

1 240 36.4 240 32.3 240 47.0 240 36.4 32.3 47.0
2 495 14.0 569 10.6 362 24.2 314 26.2 29.6 32.3
3 783 7.12 624 8.11 614 8.13 430 24.1 23.6 27.5
4 1355 5.36 957 6.05 804 6.54 766 8.43 7.31 8.88
5 2230 3.98 1681 4.23 1168 4.78 1166 6.53 6.47 6.73
6 3129 3.04 2355 3.15 1700 4.05 1714 5.55 5.17 6.18
7 4518 2.34 3139 2.26 2293 3.09 2406 5.04 4.41 5.08
8 5382 2.02 3741 1.96 2997 2.50 2808 4.78 4.30 4.64
9 6359 1.74 4830 1.73 3615 1.79 3354 4.72 4.26 4.61
10 7387 1.57 5330 1.48 3828 1.64 3921 4.17 4.19 3.53
11 8247 1.44 5495 1.32 3965 1.55 4500 3.28 2.83 3.40
12 9019 1.22 6292 1.15 4746 1.37 5326 3.17 2.80 3.24
13 9971 1.12 6760 1.04 4917 1.22 5654 2.82 2.77 2.62
14 11042 0.97 6942 0.91 5041 1.15 6446 2.52 2.57 2.21
15 11848 0.82 7732 0.84 5989 0.97 6773 2.25 2.10 2.22
16 12994 0.70 8608 0.69 6415 0.87 7115 2.15 1.91 2.22
17 14194 0.52 9026 0.57 6775 0.70 7321 2.00 1.59 2.22
18 14892 0.46 9948 0.47 7847 0.52 7768 1.96 1.49 2.22
19 8159 0.48 8248 1.88 1.34 2.21
20 8902 1.70 1.21 1.98
21 9322 1.67 1.14 1.97
22 10150 1.56 1.06 1.83
23 10599 1.44 1.03 1.67
24 11443 1.29 0.93 1.47
25 12010 1.13 0.90 1.24
26 12827 1.07 0.85 1.15

Table 2: Comparison between Algorithm 3 and Algorithm 6 in terms of DOF and accuracy.
All errors are relative and given in percentage.

6. Conclusions

We presented a novel adaptive multimesh hp-FEM method for the solution of
elliptic eigenproblems where all eigenfunctions are approximated on individual
meshes which moreover are adaptively refined independently of each other. The
multimesh approach was compared to a standard approach where all eigenfunc-
tions are approximated on the same mesh. Numerical experiments confirmed
that the multimesh approach can lead to a significant reduction of the number
of degrees of freedom per eigenfunction.

25

[1] M.G. Armentano, C. Padra, R. Rodŕıguez, and M. Scheble. An hp finite
element adaptive scheme to solve the laplace model for fluidsolid vibrations.
Computer Methods in Applied Mechanics and Engineering, 200(1):178–188,
2011.

[2] K. Andrew Cliffe, Edward J. C. Hall, and Paul Houston. Adaptive discon-
tinuous galerkin methods for eigenvalue problems arising in incompressible
fluid flows. SIAM Journal on Scientific Computing, 31(6):4607–4632, 2010.

[3] L. Dubcova, P. Solin, G. Hansen, and H. Park. Comparison of multi-
mesh hp-FEM to interpolation and projection methods for spatial coupling
of reactor thermal and neutron diffusion calculations. J. Comput. Phys.,
230:1182–1197, 2011.

[4] R. G. Durn, C. Padra, and R. Rodŕıguez. A posteriori error estimates for
the finite element approximation of eigenvalue problems. Math. Mod. &
Met.in Appl. Sc., 13(8):1219–1229, 2003.

[5] C. Engström, S. Giani, and L. Grubǐsić. Efficient and reliable hp-FEM esti-
mates for quadratic eigenvalue problems and photonic crystal applications.
Computers & Mathematics with Applications, 72(4):952 – 973, 2016.

[6] R. Geus and P. Arbenz. Pysparse and pyfemax: A python framework for
large scale sparse linear algebra.

[7] S. Giani, L. Grubǐsić, and J. S. Ovall. Benchmark results for testing adap-
tive finite element eigenvalue procedures part 2 (conforming eigenvector
and eigenvalue estimates). Applied Numerical Mathematics, 102:1 – 16,
2016.

[8] J. Gopalakrishnan, L. Grubǐsić, and J.Ovall. Spectral discretization errors
in filtered subspace iteration. Math. Comp., 89(321):203–228.

[9] V. Heuveline and R. Rannacher. A posteriori error control for finite element
approximations of elliptic eigenvalue problems. Advances in Computational
Mathematics, 15(1):107–138, 2001.

[10] N Lalor and H.H. Priebsch. The prediction of low- and mid-frequency
internal road vehicle noise: a literature survey. Proceedings of the Institu-
tion of Mechanical Engineers, Part D: Journal of Automobile Engineering,
221(3):245–269, 2007.

[11] D. Pugal, P. Solin, K.J. Kim, and A. Aabloo. Modeling ionic polymer-
metal composites with space-time adaptive multimesh hp-FEM. Commun.
Comput. Phys., 11:249–270, 2012.

[12] P. Solin, J. Cerveny, and I. Dolezel. Arbitrary-level hanging nodes and
automatic adaptivity in the hp-FEM. Math. Comput. Simul., 77:117 – 132,
2008.

26

[13] P. Solin, J. Cerveny, L. Dubcova, and D. Andrs. Monolithic discretization
of linear thermoelasticity problems via adaptive multimesh hp-FEM. J.
Comput. Appl. Math., 234:2350 – 2357, 2010.

[14] P. Solin and S. Giani. An iterative adaptive finite element method for
elliptic eigenvalue problems. J. Comput. Appl. Math., 236(18):4582 – 4599,
2012.

[15] P. Solin and S. Giani. An iterative adaptive hp-FEM method for non-
symmetric elliptic eigenvalue problems. Computing, 95(1):183213, 2013.

[16] P. Solin, L. Korous, and P. Kus. Hermes2D, a C++ library for rapid
development of adaptive hp-FEM and hp-DG solvers. J. Comput. Appl.
Math., 270:152 – 165, 2014.

[17] P. Solin, K. Segeth, and I. Dolezel. Higher-order finite element methods.
Chapman & Hall, CRC Press, 2003.

[18] T. F. Walsh, G. M. Reese, and U. L. Hetmaniuk. Explicit a posteriori
error estimates for eigenvalue analysis of heterogeneous elastic structures.
CMAME, 196(37):3614–3623, 2007.

27

