76 research outputs found

    Analysis of actions that permit the reduction and adequate handling of solid waste in the construction of housing in the city of Bogotá

    Get PDF
    24 páginas : fotos, imágenes, tablas.Dada la dinámica poblacional actualmente, las constructoras se encuentran en ejecución de macro proyectos y proyectos; cada día sus actividades y procesos se realizan a pasos acelerados sin el manejo adecuado de los residuos entre ellos los sólidos; los subcontratistas, contratistas y constructoras; tienden a priorizar y enfocar sus esfuerzos en el cumplimiento con el cliente, evitar incurrir en multas o el buen nombre y prestigio de la compañía dejando de lado el compromiso ambiental y social, En Obras se evidencia la falta de prevención y minimización de los residuos no se realiza un correcto almacenamiento, clasificación, separación en la fuente, transporte y disposición final. La falta de control de las autoridades ambientales la normatividad flexible y la falta de compromiso ambiental por parte de las empresas dedicadas a la construcción de vivienda. Sumado que este campo está caracterizado por que su planta de personal corresponde en un 80% a población con bajo nivel académico, incluyendo población analfabeta, son factores que influyen negativamente en este fenómeno. Se pretende dar a conocer esta problemática ambiental para buscar intervención y conciencia ambiental, analizar cuan provechoso puede ser que se minimice la generación de residuos, se controle su contaminación y se le dé disposición final adecuada.Given the current population dynamics, construction companies are in the process of executing macro projects and projects; every day its activities and processes are carried out at an accelerated pace without the proper handling of waste, including solids; the subcontractors, contractors and builders; They tend to prioritize and focus their efforts on compliance with the client, avoid incurring fines or the good name and prestige of the company leaving aside the environmental and social commitment. In woks, the lack of prevention and minimization of waste is evident. proper storage, sorting, separation at the source, transportation and final disposal is carried out. The lack of control of the environmental authorities, the flexible regulations and the lack of environmental commitment on the part of the companies dedicated to housing construction. In addition, this field is characterized by the fact that its staff plant corresponds to 80% of the population with low academic level, including the illiterate population, which are factors that negatively influence this phenomenon. The aim is to raise awareness of this environmental problem in order to seek intervention and environmental awareness, to analyze how profitable it may be that the generation of waste is minimized, its contamination is controlled and an adequate final disposition is given

    Aplicación de la ósmosis directa en procesos de separación y concentración de fangos de depuración

    Full text link
    ABSTRACT: Title: "FORWARD OSMOSIS APPLIED IN PROCESSES OF SEPARATION AND CONCENTRATION OF WASTEWATER TREATMENT SLUDGE" Forward osmosis is a membrane technique that allows the concentration of solutions or dilution of other solutions, simultaneously. As this technique has the advantage of working without applying pressure (the driving force is the osmotic pressure difference between both sides of the membrane) and also new membranes that works at higher flux are been developing, nowadays researchers are looking for new applications for forward osmosis. On the other hand, the management of wastewater sludge from municipal wastewater treatment plants could represent environmental risk as well as a great economic impact, as the cost of this sludge treatment is estimated at 60% of the total cost of wastewater treatment. This doctoral thesis has taken into account effluents of the sludge treatment and the activated sludge itself in order to be concentrated/separated by forward osmosis. In this doctoral thesis, tests have been performed in a lab-scale forward osmosis pilot plant in order to evaluate the feasibility of applying forward osmosis to the concentration of secondary sludge as well as nutrient concentration of digester centrate. To accomplish this, several wastewaters have been tested as draw solutions: fermentation brine from table olive processing, hide salting wastewater, brine from seawater desalination by reverse osmosis, and ammonium sulfate from ammonia absorption with sulfuric acid. On the other side, osmotic membrane bioreactors are being tested as an alternative to conventional membrane bioreactor that use ultra or microfiltration in torder to separate the biomass from the purified waster. Thus, in this doctoral thesis tests have been performed in a lab-scale osmotic membrane bioreactor in order to treat municipal wastewater. In the tests, two types of commercial available membranes (HTI CTA NW and HTI CTA ES) and other membranes still in development stage (Aquaporin In-side). The results show that: 1) "Aquaporin Inside" membrane is the most suitable membrane for nutrient concentration of digester centrate in terms of reverse salt flux and permeate of water flux. 2) HTI CTA ES membrane is fouled in a greater extent than HTI CTA NW membrane when digester centrate is used as feed solution. 3) Hide salting wastewater fouls the membrane to a greater extent than fermentation brine of table olives. 4) When used as draw solution, ammonia sulfate wastewater produces more water flux than brine from reverse osmosis desalination. 5) The volume of the activated sludge was reduced by a factor of 4.32. 6) Osmotic membrane bioreactor could achieve high COD removal efficiencies (70-100%) attaining the aimed wastewater purification.RESUMEN: Título: "APLICACIÓN DE LA ÓSMOSIS DIRECTA EN PROCESOS DE SEPARACIÓN Y CONCENTRACIÓN DE FANGOS DE DEPURACIÓN" La ósmosis directa es una técnica de membrana que permite concentrar unas disoluciones o diluir otras y que, además, permite hacerlo simultáneamente. Dado que esta técnica presenta las ventajas de operar sin necesidad de aplicar presión (la fuerza impulsora es la diferencia de presión osmótica entre ambos lados de la membrana) y se están desarrollando nuevas membranas que permiten operar a una mayor densidad de flujo de permeado, actualmente se están buscando nuevas aplicaciones para esta técnica, es decir, se están considerando nuevas disoluciones de alimento que concentrar y nuevas disoluciones de arrastre que diluir. Por otra parte, la gestión de fangos de depuración procedentes de estaciones depuradoras de aguas residuales urbanas supone un reto medioambiental así como un gran impacto económico, pues se considera que el 60% del coste total de tratamiento de aguas residuales se corresponde con la gestión de estos fangos. En la presente Tesis Doctoral se han tenido en consideración corrientes de la línea de fangos o el fango activo en sí para su concentración/separación mediante ósmosis directa. En la presente Tesis Doctoral se han realizado ensayos con una planta de ósmosis directa a escala de laboratorio para evaluar la viabilidad de la aplicación de la ósmosis directa a la concentración de fangos secundarios y también a la concentración de nutrientes en el escurrido de centrífuga. Para ello se han utilizado como disoluciones de arrastre varias corrientes residuales industriales reales: salmuera de fermentación del procesado de la oliva de mesa, residuo de conservación de pieles no curtidas, salmuera procedente de un proceso de desalación de agua de mar mediante ósmosis inversa y un residuo con sulfato amónico procedente de un proceso de absorción de amoniaco con ácido sulfúrico. Por otro lado, los biorreactores osmóticos de membrana se están probando como alternativa en determinadas aplicaciones de depuración a los biorreactores de membrana tradicionales existentes en depuradoras de aguas residuales urbanas, los cuales utilizan ultrafiltración o la microfiltración para separar la biomasa del agua depurada. Por ello, en la presente Tesis Doctoral también se ha experimentado con un biorreactor osmótico de membrana, a escala de laboratorio, con el fin de depurar agua residual urbana. En los ensayos se ha utilizado dos membranas de ósmosis directa existentes en el mercado (HTI CTA NW y HTI CTA ES) y otra aún en fase de desarrollo (Aquaporin Inside). Los resultados obtenidos indican: 1) Que a la vista de la caracterización de las membranas, la membrana tipo "Aquaporin Inside" es la más adecuada de las tres ensayadas para la concentración de nutrientes en el escurrido de centrífuga teniendo en cuenta su bajo paso inverso de sales y la densidad de flujo de permeado que produce. 2) Que la membrana tipo HTI CTA ES se ensucia más que la HTI CTA NW cuando se utiliza escurrido de centrífuga como disolución de alimento. 3) Que el residuo de conservación de pieles no curtidas provoca más ensuciamiento sobre la membrana que la salmuera de fermentación del procesado de la oliva. 4) Que, como disolución de arrastre, el residuo de sulfato amónico produce una densidad de flujo de permeado similar a la de la salmuera de rechazo de proceso de ósmosis inversa, a pesar de la mayor conductividad eléctrica del primero. 5) Que el volumen del fango secundario se consiguió reducir en un factor de 4.32 veces. 6) Que el biorreactor osmótico alcanzó rendimientos de eliminación de DQO elevados (70-100%) logrando así la correcta depuración del agua residual.RESUM: Títol: "APLICACIÓ DE L'OSMOSI DIRECTA A PROCESSOS DE SEPARACIÓ I CONCENTRACIÓ DE FANGS DE DEPURACIÓ" L'osmosi directa és una tècnica que permet concentrar unes dissolucions o diluir-ne unes altres i que, a més, permet fer-ho simultàniament. Atès que aquesta tècnica presenta l'avantatge d'operar sense necessitat d'aplicar pressió (la força impulsora és la diferència de pressió osmòtica entre ambdós costats de la membrana) i s'estan desenvolupant noves membranes que permeten operar a una major densitat de flux de permeat, actualment s'estan cercant noves aplicacions per a aquesta tècnica, es a dir, s'hi estan considerant noves dissolucions d'aliment per concentrar i noves dissolucions d'arrossegament que diluir. Per altra part, la gestió de fangs de depuració procedents d'estacions depuradores d'aigües residuals urbanes suposa un repte mediambiental així com un gran impacte econòmic, ja que es considera que el 60% del cost total del trac-tament d'aigües residuals es correspon amb la gestió d'aquests fangs. En la present Tesi Doctoral s'han tingut en compte corrents de la línia de fangs o el fang actiu en sí per a la seua concentració/separació mitjançant osmosi directa. En la present Tesi Doctoral s'han fet assajos amb una planta d'osmosi directa a escala laboratori per a avaluar la viabilitat de la aplicació de l'osmosi directa a la concentració de fangs secundaris i també a la concentració de nutrients en l'escorreguda de la centrífugació. Per això s'han utilitzat com a dissolucions d'arrossegament diversos corrents residuals industrials reals: salmorra de la fermentació del processament de l'oliva de taula, residu de conservació de pells no adobades, salmorra procedent d'un procés de dessalatge d'aigua de mar mitjançant osmosi inversa i un residu amb sulfat amònic procedent d'un procés d'absorció d'amoníac amb àcid sulfúric. Per altra part, els bioreactors osmòtics de membrana s'estan provant com alternativa en determinades aplicacions de depuració als bioreactors de membrana tradicionals existents en depuradores d'aigües residuals urbanes, les quals utilitzen ultrafiltració o la microfiltració per a separar la biomassa de l'aigua depurada. Per tant, en la present Tesis Doctoral també s'ha experimentat amb un bioreactor osmòtic de membrana, a escala de laboratori, amb la finalitat de depurar l'aigua residual urbana. Als assajos han emprat dues membranes d'osmosi directa existents en el mercat (HTI CTA NW y HTI CTA ES) i una altra en fase de desenvolupament (Aquaporin Inside). Els resultats obtinguts indiquen que: 1) En vista de la caracterització de les membranes, la membrana tipus "Aquaporin Inside" és la més adequada de les tres assajades per la concentració de nutrients en l'escorreguda de la centrífugació tenint en compte el baix pas invers de sals i la densitat de flux de permeat que produeix. 2) La membrana tipus "HTI CTA ES" s'embruta més que la "HTI CTA NW" quan s'utilitza escorreguda de centrífugació com a dissolució d'aliment. 3) El residu de conservació de pells no adobades produeix més embrutiment sobre la membrana que la salmorra de fermentació del processament de l'oliva. 4) Com a dissolució d'arrossegament, el residu de sulfat amònic produeix una densitat de flux de permeat similar a la salmorra de rebuig de procés d'osmosi inversa, a pesar de la major conductivitat elèctrica del primer. 5) El volum de fang secundari es va aconseguir reduir en un factor de 4.32 voltes. 6) El biorreactor osmòtic va assolir rendiments d'eliminació de DQO elevats (70-100%) i va aconseguir la correcta depuració de l'aigua residual.Soler Cabezas, JL. (2017). Aplicación de la ósmosis directa en procesos de separación y concentración de fangos de depuración [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86173TESI

    Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant

    Full text link
    The quality of the secondary treatment effluent (STE) from a municipal wastewater treatment plant (MWWTP) is not good enough for some applications such as agriculture. Membrane ultrafiltration (UF) has been proven to be a reliable tertiary treatment to achieve the needed water quality. The productivity of the UF processes depends on the membrane fouling. The aim of this work is to prepare a model wastewater that could mimic the fouling trend of a STE wastewater from a MWWTP. Several model wastewaters consisting of different proteins and carbohydrates were used in the UF experiments. UF was also performed with a STE. The membrane used in the UF tests was a UFCM5 from Norit X-flow® hydrophilic polyethersulfone/polyvinylpyrrolidone blend hollow-fiber UF membrane of 200 KDa molecular weight cut-off with a fiber diameter of 1.5 mm. Membrane configuration was inside-out. UF tests with model wastewater and STE wastewater were compared. The results showed that the best model wastewater, which represents the fouling trend of STE wastewater is the model wastewater whose composition is 15 mg/l of bovine serum albumin and 5.5 mg/l of dextran.The authors of this work wish to gratefully acknowledge the financial support from the Generalitat Valenciana through the program "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment. 1-7. https://doi.org/10.1080/19443994.2014.939865S17Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Konieczny, K. (1998). Disinfection of surface and ground waters with polymeric ultrafiltration membranes. Desalination, 119(1-3), 251-258. doi:10.1016/s0011-9164(98)00166-0Madaeni, S. S., Fane, A. G., & Grohmann, G. S. (1995). Virus removal from water and wastewater using membranes. Journal of Membrane Science, 102, 65-75. doi:10.1016/0376-7388(94)00252-tArnal Arnal, J. M., Sancho Fernández, M., Martín Verdú, G., & Lora García, J. (2001). Design of a membrane facility for water potabilization and its application to Third World countries. Desalination, 137(1-3), 63-69. doi:10.1016/s0011-9164(01)00205-3Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Amin Saad, M. (2004). Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination, 165, 183-191. doi:10.1016/j.desal.2004.06.021Jayalakshmi, A., Rajesh, S., & Mohan, D. (2012). Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins. Applied Surface Science, 258(24), 9770-9781. doi:10.1016/j.apsusc.2012.06.028Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., & Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116, 366-371. doi:10.1016/j.biortech.2012.03.099Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Hao, Y., Moriya, A., Maruyama, T., Ohmukai, Y., & Matsuyama, H. (2011). Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane. Journal of Membrane Science, 376(1-2), 247-253. doi:10.1016/j.memsci.2011.04.035Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Nguyen, T.-A., Yoshikawa, S., Karasu, K., & Ookawara, S. (2012). A simple combination model for filtrate flux in cross-flow ultrafiltration of protein suspension. Journal of Membrane Science, 403-404, 84-93. doi:10.1016/j.memsci.2012.02.026Domínguez Chabaliná, L., Rodríguez Pastor, M., & Rico, D. P. (2013). Characterization of soluble and bound EPS obtained from 2 submerged membrane bioreactors by 3D-EEM and HPSEC. Talanta, 115, 706-712. doi:10.1016/j.talanta.2013.05.062Viebke, C. (2000). Determination of molecular mass distribution of κ-carrageenan and xanthan using asymmetrical flow field-flow fractionation. Food Hydrocolloids, 14(3), 265-270. doi:10.1016/s0268-005x(99)00066-1Kelly, S. T., & Zydney, A. L. (1995). Mechanisms for BSA fouling during microfiltration. Journal of Membrane Science, 107(1-2), 115-127. doi:10.1016/0376-7388(95)00108-oHwang, K.-J., & Sz, P.-Y. (2011). Membrane fouling mechanism and concentration effect in cross-flow microfiltration of BSA/dextran mixtures. Chemical Engineering Journal, 166(2), 669-677. doi:10.1016/j.cej.2010.11.04

    Spontaneous verbal repetition in toddler-adult conversations: a longitudinal study 9 with Spanish-speaking two- year-olds

    Full text link
    The role of children’s verbal repetition of parents’ utterances on vocabulary growth has been well documented (Masur, 1999). Nevertheless, few studies have analyzed adults’ and children’s spontaneous verbal repetition around the second birthday distinguishing between the types of repetition. We analyzed longitudinally Spanish-speaking parent-child dyads during spontaneous interaction at 21, 24 and 30 months. Linguistic level was measured using the Spanish version of the MacArthur CDI (López-Ornat et al., 2005). Children’s and adults’ repetitions are about 17% of the speech. Children repeated adults’ utterances in a reduced manner whereas adults produced more extended repetitions. Adults’ rate of repetition predicted children’s linguistic level at 30 months. Children’s rate of repetition did not predict linguistic level. These results suggest that parents adapt their speech to children’s communicative abilities. Since children’s rate of repetition did not predict linguistic level, we suggest that verbal imitation plays an indirect and complex role in communicative developmen

    Study of the influence of operational conditions and hollow-fiber diameter on the ultrafiltration performance of a secondary treatment effluent

    Full text link
    Secondary treatment effluents from municipal wastewater treatment plants (MWWTP) must achieve high water quality standards for their reuse in agriculture. To achieve these standards, ultrafiltration (UF) process, which is economically feasible, is carried out. However, UF has a drawback, membrane fouling, which causes operating difficulties and an increment of the operating cost. In order to minimize this phenomenon, it is important to determine the best operational conditions. Wastewater samples provided by MWWTP have a lot of variability in their composition due to factors such as temperature, efficiency of the secondary treatment, etc. Besides, the soluble microbial products of the secondary effluent are dependent on the type of the biological treatment implemented and its operating conditions. A model wastewater feed solution was prepared consisting of 15 mg/L of bovine serum albumin and 5.5 mg/L of dextran. In this research, UF tests were performed with the optimal simulated wastewater using two membranes UFCM5 Norit X-flow® hollow-fiber: one of them with a fiber diameter of 1.5 mm and the other one with a fiber diameter of 0.8 mm. The operational conditions, which influence membrane fouling, were varied in the range of 62 100 kPa for transmembrane pressure (TMP) and in the range of 0.8 1.2 m/s for cross-flow velocity (CFV). The best operational conditions were selected in terms of higher permeate flux. The highest permeate flux was obtained for the membrane of 0.8 mm and the lower energy consumption was achieved at a CFV of 1.2 m/s and a TMP of 62 kPa.Torà Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2015). Study of the influence of operational conditions and hollow-fiber diameter on the ultrafiltration performance of a secondary treatment effluent. Desalination and Water Treatment. 1-7. doi:10.1080/19443994.2015.1118887S1

    Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater

    Full text link
    Secondary treatment effluents from Municipal Wastewater Treatment Plants require tertiary treatments to be reused in agriculture. Among tertiary treatment technologies, ultrafiltration has been proven to be a reliable reclamation process. Nevertheless this technique has an important disadvantage: membrane fouling. This phenomenon causes decline in permeate flux with time and increases the operational costs. Due to the fact that secondary effluents from Municipal Wastewater Treatment Plants contain a large amount of different compounds and that there is certain variability in their composition, the use of a simplified model wastewater consisting of only few compounds may help to simulate better the ultrafiltration fouling trend. The main secondary treatment effluent components responsible for fouling membrane during ultrafiltration tests are extracellular polymeric substances. These substances are mainly composed of proteins and polysaccharides, thus they are commonly used to prepare model wastewaters. This work consisted in two parts. Firstly, a model wastewater was selected among different model solutions mimicking secondary treatment effluent. Secondly, ultrafiltration behaviour of the selected model solution was compared with the behaviour of the secondary effluent in the ultrafiltration tests at different cross-flow velocities and transmembrane pressures. The membrane used in the ultrafiltration tests was UFCM5 Norit X-flow® hollow-fiber. To prepare model wastewaters, three parameters (proteins and carbohydrates concentrations and chemical oxygen demand) were considered. The model wastewater that represented the best the fouling trend of the secondary treatment effluent had a composition of 15 mg/l of bovine serum albumin and 5.5 mg/l of dextranThe authors wish to gratefully acknowledge the financial support of the Generalitat Valenciana through the project "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2015). Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater. Desalination and Water Treatment. 1-9. doi:10.1080/19443994.2014.999714S19Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Muthukumaran, S., Jegatheesan, J. V., & Baskaran, K. (2013). Comparison of fouling mechanisms in low-pressure membrane (MF/UF) filtration of secondary effluent. Desalination and Water Treatment, 52(4-6), 650-662. doi:10.1080/19443994.2013.826324Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Nguyen, S. T., & Roddick, F. A. (2011). Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent. Desalination and Water Treatment, 34(1-3), 94-99. doi:10.5004/dwt.2011.2790Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Hwang, K.-J., & Chiang, Y.-C. (2014). Comparisons of membrane fouling and separation efficiency in protein/polysaccharide cross-flow microfiltration using membranes with different morphologies. Separation and Purification Technology, 125, 74-82. doi:10.1016/j.seppur.2014.01.041Yamamura, H., Okimoto, K., Kimura, K., & Watanabe, Y. (2014). Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes. Water Research, 54, 123-136. doi:10.1016/j.watres.2014.01.024Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Vincent-Vela, M.-C., Álvarez-Blanco, S., Lora-García, J., & Bergantiños-Rodríguez, E. (2009). Estimation of the gel layer concentration in ultrafiltration: Comparison of different methods. Desalination and Water Treatment, 3(1-3), 157-161. doi:10.5004/dwt.2009.454Valiño, V., San Román, M. F., Ibáñez, R., Benito, J. M., Escudero, I., & Ortiz, I. (2014). Accurate determination of key surface properties that determine the efficient separation of bovine milk BSA and LF proteins. Separation and Purification Technology, 135, 145-157. doi:10.1016/j.seppur.2014.07.051Luck, P. J., Vardhanabhuti, B., Yong, Y. H., Laundon, T., Barbano, D. M., & Foegeding, E. A. (2013). Comparison of functional properties of 34% and 80% whey protein and milk serum protein concentrates. Journal of Dairy Science, 96(9), 5522-5531. doi:10.3168/jds.2013-6617Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Salahi, A., Mohammadi, T., Rahmat Pour, A., & Rekabdar, F. (2009). Oily wastewater treatment using ultrafiltration. Desalination and Water Treatment, 6(1-3), 289-298. doi:10.5004/dwt.2009.480Janssen, A. N., van Agtmaal, J., van den Broek, W. B. P., de Koning, J., Menkveld, H. W. H., Schrotter, J.-C., … van der Graaf, J. H. J. M. (2008). Monitoring of SUR to control and enhance the performance of dead-end ultrafiltration installations treating wwtp effluent. Desalination, 231(1-3), 99-107. doi:10.1016/j.desal.2007.10.024Torà-Grau, M., Soler-Cabezas, J. L., Vincent-Vela, M. C., Mendoza-Roca, J. A., & Martínez-Francisco, F. J. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment, 1-7. doi:10.1080/19443994.2014.93986

    Educational quality and innovation in teacher training: a qualitative study in two schools

    Get PDF
    La innovación educativa es un aspecto fundamental para mejorar la calidad de la enseñanza y el aprendizaje en los centros escolares. Este estudio enfoca su atención tanto en los intereses y motivaciones como en las dificultades e inquietudes que presenta el profesorado en su formación permanente sobre la innovación educativa. En esta investigación participan un total de 30 profesores y profesoras de Educación Infantil y Primaria de centros públicos y concertados. La recogida de datos se realiza a través de una entrevista semiestructurada que reflexiona y valora la innovación docente y curricular en la formación continua del profesorado. Se adopta una metodología cualitativa mediante narrativas, apoyada para el tratamiento de los datos en el programa AQUAD. Los resultados evidencian la necesidad del profesorado de recibir una formación permanente acorde a sus intereses y necesidades, enfocada en la mayoría de casos a innovaciones educativas metodológicas. El conocimiento y la valoración de las concepciones y creencias de los docentes participantes sobre la innovación educativa y su formación continua resulta de interés para avanzar hacia una mejora en el desarrollo profesional docente.Educational innovation is a fundamental aspect to improve the quality of teaching and learning in schools. This study focuses its attention both on the interests and motivations and on the difficulties and concerns that the teaching staff presents in their ongoing training on educational innovation. A total of 30 teachers of Early Childhood and Primary Education of public and private schools participate in this research. The data collection is carried out through a semi-structured interview that reflects and values teaching and curricular innovation in the continuing education of teachers. A qualitative methodology is adopted through narratives, supported for the treatment of data in the AQUAD program. The results show the need for teachers to receive ongoing training according to their interests and needs, focused in most cases on educational methodological innovations. The knowledge and the evaluation of the conceptions and beliefs of the participating teachers on the educational innovation and their continuous formation is of interest to advance towards an improvement in the professional development teacher

    Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis

    Full text link
    [EN] In the last years, forward osmosis (FO) has gained increasing prominence, new membranes are being developed and new applications are being considered. In this study, the recovery of nitrogen and phosphorus of the anaerobically digested sludge centrate was studied by FO using two industrial effluents characterized by high osmotic pressure (residual stream from an absorption process for ammonia elimination and brine from a seawater desalination facility) as draw solutions. The experiments were carried out in a laboratory plant testing two FO membranes (CTA-NW and Aquaporin Inside membrane). Results showed that nitrogen concentration was achieved with both membranes and both draw solutions. The use of the effluent from ammonia absorption enhanced of the nitrogen concentration in the feed stream to the FO membrane. The reached concentration factor in the laboratory tests was 1.61 when Aquaporin membrane was used. Phosphorus could not be concentrated because of its precipitation as calcium phosphate (confirmed by EDX analysis) as a consequence of the high calcium concentration of the municipal wastewater.This study was supported by the Spanish Ministry of Economy and Competitiveness through the project RTC-2015-3582-5-AR.Soler Cabezas, JL.; Mendoza Roca, JA.; Vincent Vela, MC.; Lujan Facundo, MJ.; Pastor Alcañiz, L. (2018). Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis. Separation and Purification Technology. 193:289-296. https://doi.org/10.1016/j.seppur.2017.10.058S28929619

    Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms

    Full text link
    Ultrafiltration (UF) with hollow fiber membranes is a proven membrane technique that can achieve high water quality standards as a tertiary treatment in municipal wastewater treatment plants. However, UF has a major drawback, membrane fouling, which causes losses of productivity and increases operation costs. Thus, the aim of this work is to model membrane fouling in the UF of a secondary treatment effluent. The tests were carried out with a model wastewater solution that consisted of bovine serum albumin and dextran. Three different transmembrane pressures and three different crossflow velocities were tested. Several fouling models available in the literature, and new models proposed, were fitted to permeate flux decline experimental data. The models studied by other authors and considered in this study were: Hermia s models (complete, intermediate, standard pore blocking and gel layer) and Belfort s model. The new models proposed in this work were: modified Belfort s model, quadratic exponential model, logarithmic inversed model, double exponential model and tangent inversed model. The fitting accuracy of the models was determined in terms of the R-squared and standard deviation. The results showed that the model that had the higher fitting accuracy was the logarithmic inversed model. Among the Hermia s models, the model that had the higher fitting accuracy was the intermediate pore blocking model. Therefore, the predominant fouling mechanism was determined and it was the intermediate pore blocking modelThe authors wish to gratefully acknowledge the financial support of the Generalitat Valenciana through the project "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013".Soler Cabezas, JL.; Tora Grau, M.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2014). Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms. Desalination and Water Treatment. 1-11. doi:10.1080/19443994.2014.969320S111Gadani, V., Irwin, R., & Mandra, V. (1996). Ultrafiltration as a tertiary treatment: Joint research program on membranes. Desalination, 106(1-3), 47-53. doi:10.1016/s0011-9164(96)00091-4Illueca-Muñoz, J., Mendoza-Roca, J. A., Iborra-Clar, A., Bes-Piá, A., Fajardo-Montañana, V., Martínez-Francisco, F. J., & Bernácer-Bonora, I. (2008). Study of different alternatives of tertiary treatments for wastewater reclamation to optimize the water quality for irrigation reuse. Desalination, 222(1-3), 222-229. doi:10.1016/j.desal.2007.01.157Muthukumaran, S., Jegatheesan, J. V., & Baskaran, K. (2013). Comparison of fouling mechanisms in low-pressure membrane (MF/UF) filtration of secondary effluent. Desalination and Water Treatment, 52(4-6), 650-662. doi:10.1080/19443994.2013.826324Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Konieczny, K. (1998). Disinfection of surface and ground waters with polymeric ultrafiltration membranes. Desalination, 119(1-3), 251-258. doi:10.1016/s0011-9164(98)00166-0Madaeni, S. S., Fane, A. G., & Grohmann, G. S. (1995). Virus removal from water and wastewater using membranes. Journal of Membrane Science, 102, 65-75. doi:10.1016/0376-7388(94)00252-tArnal Arnal, J. M., Sancho Fernández, M., Martín Verdú, G., & Lora García, J. (2001). Design of a membrane facility for water potabilization and its application to Third World countries. Desalination, 137(1-3), 63-69. doi:10.1016/s0011-9164(01)00205-3Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Amin Saad, M. (2004). Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination, 165, 183-191. doi:10.1016/j.desal.2004.06.021Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Jayalakshmi, A., Rajesh, S., & Mohan, D. (2012). Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins. Applied Surface Science, 258(24), 9770-9781. doi:10.1016/j.apsusc.2012.06.028Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., & Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116, 366-371. doi:10.1016/j.biortech.2012.03.099Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Sheng, G.-P., Yu, H.-Q., & Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882-894. doi:10.1016/j.biotechadv.2010.08.001Nguyen, S. T., & Roddick, F. A. (2011). Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent. Desalination and Water Treatment, 34(1-3), 94-99. doi:10.5004/dwt.2011.2790Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Suh, C., Lee, S., & Cho, J. (2013). Investigation of the effects of membrane fouling control strategies with the integrated membrane bioreactor model. Journal of Membrane Science, 429, 268-281. doi:10.1016/j.memsci.2012.11.042Duclos-Orsello, C., Li, W., & Ho, C.-C. (2006). A three mechanism model to describe fouling of microfiltration membranes. Journal of Membrane Science, 280(1-2), 856-866. doi:10.1016/j.memsci.2006.03.005Davis, R. H. (1992). Modeling of Fouling of Crossflow Microfiltration Membranes. Separation and Purification Methods, 21(2), 75-126. doi:10.1080/03602549208021420Bhattacharjee, S., & Bhattacharya, P. K. (1992). Flux decline behaviour with low molecular weight solutes during ultrafiltration in an unstirred batch cell. Journal of Membrane Science, 72(2), 149-161. doi:10.1016/0376-7388(92)80195-pMallubhotla, H., & Belfort, G. (1996). Semiempirical Modeling of Cross-Flow Microfiltration with Periodic Reverse Filtration. Industrial & Engineering Chemistry Research, 35(9), 2920-2928. doi:10.1021/ie950719tSalahi, A., Abbasi, M., & Mohammadi, T. (2010). Permeate flux decline during UF of oily wastewater: Experimental and modeling. Desalination, 251(1-3), 153-160. doi:10.1016/j.desal.2009.08.006Field, R. W., Wu, D., Howell, J. A., & Gupta, B. B. (1995). Critical flux concept for microfiltration fouling. Journal of Membrane Science, 100(3), 259-272. doi:10.1016/0376-7388(94)00265-zVincent Vela, M. C., Álvarez Blanco, S., Lora García, J., & Bergantiños Rodríguez, E. (2009). Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chemical Engineering Journal, 149(1-3), 232-241. doi:10.1016/j.cej.2008.10.027Hasan, A., Peluso, C. R., Hull, T. S., Fieschko, J., & Chatterjee, S. G. (2013). A surface-renewal model of cross-flow microfiltration. Brazilian Journal of Chemical Engineering, 30(1), 167-186. doi:10.1590/s0104-66322013000100019ANG, W., & ELIMELECH, M. (2007). Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation. Journal of Membrane Science, 296(1-2), 83-92. doi:10.1016/j.memsci.2007.03.018Muthukumaran, S., & Baskaran, K. (2013). Comparison of the performance of ceramic microfiltration and ultrafiltration membranes in the reclamation and reuse of secondary wastewater. Desalination and Water Treatment, 52(4-6), 670-677. doi:10.1080/19443994.2013.826333Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Swaminathan, T., Chaudhuri, M., & Sirkar, K. K. (1979). Anomalous flux behavior in initial time stirred protein ultrafiltration through partially permeable membranes. Journal of Applied Polymer Science, 24(6), 1581-1585. doi:10.1002/app.1979.070240620Ahmad, A. L., & Hairul, N. A. H. (2009). Protein–membrane interactions in forced-flow electrophoresis of protein solutions: Effect of initial pH and initial ionic strength. Separation and Purification Technology, 66(2), 273-278. doi:10.1016/j.seppur.2008.12.027Gu, Z. (2007). Across-sample Incomparability of R2s and Additional Evidence on Value Relevance Changes Over Time. Journal of Business Finance & Accounting, 34(7-8), 1073-1098. doi:10.1111/j.1468-5957.2007.02044.xVincent, T., Parodi, A., & Guibal, E. (2008). Pt recovery using Cyphos IL-101 immobilized in biopolymer capsules. Separation and Purification Technology, 62(2), 470-479. doi:10.1016/j.seppur.2008.02.025Daufin, G., Merin, U., Labbé, J. P., Quémerais, A., & Kerhervé, F. L. (1991). Cleaning of inorganic membranes after whey and milk ultrafiltration. Biotechnology and Bioengineering, 38(1), 82-89. doi:10.1002/bit.260380111Daufin, G., Merin, U., Kerherve, F.-L., Labbe, J.-P., Quemerais, A., & Bousser, C. (1992). Efficiency of cleaning agents for an inorganic membrane after milk ultrafiltration. Journal of Dairy Research, 59(1), 29-38. doi:10.1017/s0022029900030211Morão, A., Nunes, J. C., Sousa, F., Amorim, M. T. P. de, Escobar, I. C., & Queiroz, J. A. (2009). Development of a model for membrane filtration of long and flexible macromolecules: Application to predict dextran and linear DNA rejections in ultrafiltration. Journal of Membrane Science, 336(1-2), 61-70. doi:10.1016/j.memsci.2009.03.007Ouammou, M., Tijani, N., Calvo, J. I., Velasco, C., Martín, A., Martínez, F., … Hernández, A. (2007). Flux decay in protein microfiltration through charged membranes as a function of pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(3), 267-273. doi:10.1016/j.colsurfa.2006.11.006Mohammadi, T., Kazemimoghadam, M., & Saadabadi, M. (2003). Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions. Desalination, 157(1-3), 369-375. doi:10.1016/s0011-9164(03)00419-3Ng, C. Y., Mohammad, A. W., Ng, L. Y., & Jahim, J. M. (2014). Membrane fouling mechanisms during ultrafiltration of skimmed coconut milk. Journal of Food Engineering, 142, 190-200. doi:10.1016/j.jfoodeng.2014.06.005Mah, S.-K., Chuah, C.-K., Cathie Lee, W. P., & Chai, S.-P. (2012). Ultrafiltration of palm oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling mechanism analysis and membrane characterizations. Separation and Purification Technology, 98, 419-431. doi:10.1016/j.seppur.2012.07.020Said, M., Ahmad, A., Mohammad, A. W., Nor, M. T. M., & Sheikh Abdullah, S. R. (2015). Blocking mechanism of PES membrane during ultrafiltration of POME. Journal of Industrial and Engineering Chemistry, 21, 182-188. doi:10.1016/j.jiec.2014.02.023Amin, I. N. H. M., Mohammad, A. W., Markom, M., Peng, L. C., & Hilal, N. (2010). Analysis of deposition mechanism during ultrafiltration of glycerin-rich solutions. Desalination, 261(3), 313-320. doi:10.1016/j.desal.2010.04.01

    A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration

    Full text link
    [EN] Nowadays, wastewater reuse in Mediterranean countries is necessary to cover the water demand. This contributes to the protection of the environment and encourages the circular economy. Due to increasingly strict regulation, the secondary effluent of a wastewater treatment plant requires further (tertiary) treatment to reach enough quality for its reuse in agriculture. Ultrafiltration is a membrane technique suitable for tertiary treatment. However, the most important drawback of ultrafiltration is membrane fouling. The aim of this work is to predict membrane fouling and ultrafiltered wastewater permeate quality for a particular membrane, using the information given by an exhaustive secondary effluent characterization. For this, ultrafiltration of real and simulated wastewaters and of their components after fractionation has been performed. In order to better characterize the secondary effluent, resin fractionation and further membrane ultrafiltration of the generated fractions and wastewater were performed. The results indicated that hydrophobic substances were lower than hydrophilic ones in the secondary effluent. Supelite DAX-8, Amberlite XAD-4 and Amberlite IRA-958 resins were found not to be specific for humic acids, proteins and carbohydrates, which are the main components of the effluent organic matter. Two models have been performed using statistics (partial least squares, PLS) and an artificial neural network (ANN), respectively. The results showed that the ANN model predicted permeate quality and membrane fouling with higher accuracy than PLS.This study was funded by Generalitat Valenciana (Project AICO 18/319).Anderson-Alejandro Benites-Zelaya; Soler Cabezas, JL.; Ferrer-Polonio, E.; Mendoza Roca, JA.; Vincent Vela, MC. (2020). A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration. Water. 12(7):1-17. https://doi.org/10.3390/w12071975S117127European Commission—Environmenthttps://ec.europa.eu/environment/water/reuse.htmRippey, S. R., & Watkins, W. D. (1992). Comparative Rates of Disinfection of Microbial Indicator Organisms in Chlorinated Sewage Effluents. Water Science and Technology, 26(9-11), 2185-2189. doi:10.2166/wst.1992.0693Mounaouer, B., & Abdennaceur, H. (2016). Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. doi:10.1007/s11356-016-7173-4Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3-22. doi:10.1016/j.watres.2005.10.030Cervero-Aragó, S., Rodríguez-Martínez, S., Puertas-Bennasar, A., & Araujo, R. M. (2015). Effect of Common Drinking Water Disinfectants, Chlorine and Heat, on Free Legionella and Amoebae-Associated Legionella. PLOS ONE, 10(8), e0134726. doi:10.1371/journal.pone.0134726Anfruns-Estrada, E., Bruguera-Casamada, C., Salvadó, H., Brillas, E., Sirés, I., & Araujo, R. M. (2017). Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments. Water Research, 126, 450-459. doi:10.1016/j.watres.2017.09.056Tchobanoglous, G., Darby, J., Bourgeous, K., McArdle, J., Genest, P., & Tylla, M. (1998). Ultrafiltration as an advanced tertiary treatment process for municipal wastewater. Desalination, 119(1-3), 315-321. doi:10.1016/s0011-9164(98)00175-1Lubello, C., Gori, R., de Bernardinis, A. M., & Simonelli, G. (2003). Ultrafiltration as tertiary treatment for industrial reuse. Water Supply, 3(4), 161-168. doi:10.2166/ws.2003.0058Illueca-Muñoz, J., Mendoza-Roca, J. A., Iborra-Clar, A., Bes-Piá, A., Fajardo-Montañana, V., Martínez-Francisco, F. J., & Bernácer-Bonora, I. (2008). Study of different alternatives of tertiary treatments for wastewater reclamation to optimize the water quality for irrigation reuse. Desalination, 222(1-3), 222-229. doi:10.1016/j.desal.2007.01.157Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Filloux, E., Labanowski, J., & Croue, J. P. (2012). Understanding the fouling of UF/MF hollow fibres of biologically treated wastewaters using advanced EfOM characterization and statistical tools. Bioresource Technology, 118, 460-468. doi:10.1016/j.biortech.2012.05.081Shon, H. K., Vigneswaran, S., & Snyder, S. A. (2006). Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Critical Reviews in Environmental Science and Technology, 36(4), 327-374. doi:10.1080/10643380600580011Wang, Z.-P., & Zhang, T. (2010). Characterization of soluble microbial products (SMP) under stressful conditions. Water Research, 44(18), 5499-5509. doi:10.1016/j.watres.2010.06.067Ferrer-Polonio, E., White, K., Mendoza-Roca, J. A., & Bes-Piá, A. (2018). The role of the operating parameters of SBR systems on the SMP production and on membrane fouling reduction. Journal of Environmental Management, 228, 205-212. doi:10.1016/j.jenvman.2018.09.036Ferrer-Polonio, E., Fernández-Navarro, J., Alonso-Molina, J. L., Bes-Piá, A., & Mendoza-Roca, J. A. (2018). Influence of organic matter type in wastewater on soluble microbial products production and on further ultrafiltration. Journal of Chemical Technology & Biotechnology, 93(11), 3284-3291. doi:10.1002/jctb.5689Leenheer, J. A. (1981). Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology, 15(5), 578-587. doi:10.1021/es00087a010Imai, A., Fukushima, T., Matsushige, K., Kim, Y.-H., & Choi, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36(4), 859-870. doi:10.1016/s0043-1354(01)00283-4Zheng, X., Khan, M. T., & Croué, J.-P. (2014). Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions. Water Research, 65, 414-424. doi:10.1016/j.watres.2014.07.039Ferrer-Polonio, E., McCabe, M., Mendoza-Roca, J. A., & Vincent-Vela, M.-C. (2018). Fractionation of secondary effluents of wastewater treatment plants in view of the evaluation of membrane fouling in a further ultrafiltration step. Journal of Chemical Technology & Biotechnology, 93(5), 1495-1501. doi:10.1002/jctb.5520Chaloulakou, A., Grivas, G., & Spyrellis, N. (2003). Neural Network and Multiple Regression Models for PM10 Prediction in Athens: A Comparative Assessment. Journal of the Air & Waste Management Association, 53(10), 1183-1190. doi:10.1080/10473289.2003.10466276Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67(1-2), 17-35. doi:10.1016/s0306-2619(00)00005-2Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919-928. doi:10.1016/j.envsoft.2003.10.005Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., & Ngo, H. H. (2006). Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. Journal of Membrane Science, 278(1-2), 232-238. doi:10.1016/j.memsci.2005.11.006Marhaba, T. F. (2000). Fluorescence Technique for Rapid Identification of DOM Fractions. Journal of Environmental Engineering, 126(2), 145-152. doi:10.1061/(asce)0733-9372(2000)126:2(145)Teodosiu, C. (2000). Neural network models for ultrafiltration and backwashing. Water Research, 34(18), 4371-4380. doi:10.1016/s0043-1354(00)00217-7Delgrange-Vincent, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L., & Laîné, J. M. (2000). Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production. Desalination, 131(1-3), 353-362. doi:10.1016/s0011-9164(00)90034-1Vincent Vela, M. C., Álvarez Blanco, S., Lora García, J., & Bergantiños Rodríguez, E. (2009). Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chemical Engineering Journal, 149(1-3), 232-241. doi:10.1016/j.cej.2008.10.027Zuriaga-Agustí, E., Bes-Piá, A., Mendoza-Roca, J. A., & Alonso-Molina, J. L. (2013). Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination. Separation and Purification Technology, 112, 1-10. doi:10.1016/j.seppur.2013.03.048Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30(8), 1749-1758. doi:10.1016/0043-1354(95)00323-1Juang, L.-C., Tseng, D.-H., Chen, Y.-M., Semblante, G. U., & You, S.-J. (2013). The effect soluble microbial products (SMP) on the quality and fouling potential of MBR effluent. Desalination, 326, 96-102. doi:10.1016/j.desal.2013.07.005Ayache, C., Pidou, M., Croué, J. P., Labanowski, J., Poussade, Y., Tazi-Pain, A., … Gernjak, W. (2013). Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment. Water Research, 47(8), 2633-2642. doi:10.1016/j.watres.2013.01.043Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33(14), 3063-3082. doi:10.1016/s0043-1354(99)00022-6Haberkamp, J., Ernst, M., Böckelmann, U., Szewzyk, U., & Jekel, M. (2008). Complexity of ultrafiltration membrane fouling caused by macromolecular dissolved organic compounds in secondary effluents. Water Research, 42(12), 3153-3161. doi:10.1016/j.watres.2008.03.007Yigit, N. O., Harman, I., Civelekoglu, G., Koseoglu, H., Cicek, N., & Kitis, M. (2008). Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions. Desalination, 231(1-3), 124-132. doi:10.1016/j.desal.2007.11.041Yammine, S., Rabagliato, R., Vitrac, X., Mietton Peuchot, M., & Ghidossi, R. (2019). Selecting ultrafiltration membranes for fractionation of high added value compounds from grape pomace extracts. OENO One, 53(3). doi:10.20870/oeno-one.2019.53.3.2343Babcock, J. J., & Brancaleon, L. (2013). Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength. International Journal of Biological Macromolecules, 53, 42-53. doi:10.1016/j.ijbiomac.2012.10.030Zirnsak, M. A., & Boger, D. V. (1998). Axisymmetric entry flow of semi-dilute xanthan gum solutions: prediction and experiment. Journal of Non-Newtonian Fluid Mechanics, 79(2-3), 105-136. doi:10.1016/s0377-0257(98)00104-9Corbatón-Báguena, M.-J., Álvarez-Blanco, S., & Vincent-Vela, M.-C. (2015). Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions. Desalination, 360, 87-96. doi:10.1016/j.desal.2015.01.019Maruyama, T., Katoh, S., Nakajima, M., & Nabetani, H. (2001). Mechanism of bovine serum albumin aggregation during ultrafiltration. Biotechnology and Bioengineering, 75(2), 233-238. doi:10.1002/bit.10001Soler-Cabezas, J. L., Torà-Grau, M., Vincent-Vela, M. C., Mendoza-Roca, J. A., & Martínez-Francisco, F. J. (2014). Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms. Desalination and Water Treatment, 56(13), 3427-3437. doi:10.1080/19443994.2014.969320Vela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028Mah, S.-K., Chuah, C.-K., Cathie Lee, W. P., & Chai, S.-P. (2012). Ultrafiltration of palm oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling mechanism analysis and membrane characterizations. Separation and Purification Technology, 98, 419-431. doi:10.1016/j.seppur.2012.07.020Saha, S., & Das, C. (2015). Analysis of Fouling Characteristics and Flux Decline during Humic Acids Batch Ultrafiltration. Journal of Chemical Engineering & Process Technology, 06(05). doi:10.4172/2157-7048.1000252Acero, J. L., Benitez, F. J., Leal, A. I., Real, F. J., & Teva, F. (2010). Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials, 177(1-3), 390-398. doi:10.1016/j.jhazmat.2009.12.045Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Pao, H.-T. (2008). A comparison of neural network and multiple regression analysis in modeling capital structure. Expert Systems with Applications, 35(3), 720-727. doi:10.1016/j.eswa.2007.07.01
    corecore