214 research outputs found

    How to Teach Pre-Service Teachers to Make a Didactic Program? The Collaborative Learning Associated with Mobile Devices

    Get PDF
    We acknowledge the researchers of the research group AREA (HUM-672), which belongs to the Ministry of Education and Science of the Junta de Andalucía and is registered in the Department of Didactics and School Organization of the Faculty of Education Sciences of the University of Granada.Today, pedagogical proposals are increasingly moving away from purely traditional approaches, with a proliferation of active methodologies in the teaching–learning processes. This research aims to find out the effectiveness of the collaborative method in mobile learning, as opposed to traditional methodology, for university students in the learning of the didactic program. The research methodology is quantitative, applying a quasi-experimental design with a control group and experimental group. The results show that the collaborative learning teaching method associated with mobile learning mainly increases motivation, the relationships between teachers and students, the relationships between students and content, the relationships between students and students, autonomy in learning, pedagogical collaboration between students, problem-solving, and the sense of time in the training process. It is concluded that the collaborative learning method associated with mobile learning is more effective for learning didactic programming than the traditional method

    Damping mechanisms for oscillations in solar prominences

    Full text link
    Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also present. The existing observational evidence reveals that small amplitude oscillations, after excited, are damped in short spatial and temporal scales by some as yet not well determined physical mechanism(s). Commonly, these oscillations have been interpreted in terms of linear magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping mechanisms that have been recently put forward in order to explain the observed attenuation scales. These mechanisms include thermal effects, through non-adiabatic processes, mass flows, resonant damping in non-uniform media, and partial ionization effects. The relevance of each mechanism is assessed by comparing the spatial and time scales produced by each of them with those obtained from observations. Also, the application of the latest theoretical results to perform prominence seismology is discussed, aiming to determine physical parameters in prominence plasmas that are difficult to measure by direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted

    Oscillatory Modes of a Prominence-PCTR-Corona Slab Model

    Full text link
    Oscillations of magnetic structures in the solar corona have often been interpreted in terms of magnetohydrodynamic waves. We study the adiabatic magnetoacoustic modes of a prominence plasma slab with a uniform longitudinal magnetic field, surrounded by a prominence-corona transition region (PCTR) and a coronal medium. Considering linear small-amplitude oscillations, the dispersion relation for the magnetoacoustic slow and fast modes is deduced assuming evanescent-like perturbations in the coronal medium. In the system without PCTR, a classification of the oscillatory modes according to the polarisation of their eigenfunctions is made in order to distinguish modes with fast-like or slow-like properties. Internal and external slow modes are governed by the prominence and coronal properties respectively, and fast modes are mostly dominated by prominence conditions for the observed wavelengths. In addition, the inclusion of an isothermal PCTR does not substantially influence the mode frequencies, but new solutions (PCTR slow modes) are present.Comment: Accepted for publication in Solar Physic

    On the Ratio of Periods of the Fundamental Harmonic and First Overtone of Magnetic Tube Kink Oscillations

    Get PDF
    We study kink oscillations of thin magnetic tubes. We assume that the density inside and outside the tube (and possibly also the cross-section radius) can vary along the tube. This variation is assumed to be of such a form that the kink speed is symmetric with respect to the tube centre and varies monotonically from the tube ends to the tube centre. Then we prove a theorem stating that the ratio of periods of the fundamental mode and first overtone is a monotonically increasing function of the ratio of the kink speed at the tube centre and the tube ends. In particular, it follows from this theorem that the period ratio is lower than two when the kink speed increases from the tube ends to its centre, while it is higher than two when the kink speed decreases from the tube ends to its centre. The first case is typical for non-expanding coronal magnetic loops, and the second for prominence threads. We apply the general results to particular problems. First we consider kink oscillations of coronal magnetic loops. We prove that, under reasonable assumptions, the ratio of the fundamental period to the first overtone is lower than two and decreases when the loop size increases. The second problem concerns kink oscillations of prominence threads. We consider three internal density profiles: generalised parabolic, Gaussian, and Lorentzian. Each of these profiles contain the parameter (Formula presented.) that is responsible for its sharpness. We calculate the dependence of the period ratio on the ratio of the mean to the maximum density. For all considered values of (Formula presented.) we find that a formula relating the period ratio and the ratio of the mean and maximum density suggested by Soler, Goossens, and Ballester (Astron. Astrophys.575, A123, 2015) gives a sufficiently good approximation to the exact dependence

    Quantum transport through STM-lifted single PTCDA molecules

    Full text link
    Using a scanning tunneling microscope we have measured the quantum conductance through a PTCDA molecule for different configurations of the tip-molecule-surface junction. A peculiar conductance resonance arises at the Fermi level for certain tip to surface distances. We have relaxed the molecular junction coordinates and calculated transport by means of the Landauer/Keldysh approach. The zero bias transmission calculated for fixed tip positions in lateral dimensions but different tip substrate distances show a clear shift and sharpening of the molecular chemisorption level on increasing the STM-surface distance, in agreement with experiment.Comment: accepted for publication in Applied Physics

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Mesophyll porosity is modulated by the presence of functional stomata

    Get PDF
    The formation of stomata and leaf mesophyll airspace must be coordinated to establish an efficient and robust network that facilitates gas exchange for photosynthesis, however the mechanism by which this coordinated development occurs remains unclear. Here, we combine microCT and gas exchange analyses with measures of stomatal size and patterning in a range of wild, domesticated and transgenic lines of wheat and Arabidopsis to show that mesophyll airspace formation is linked to stomatal function in both monocots and eudicots. Our results support the hypothesis that gas flux via stomatal pores influences the degree and spatial patterning of mesophyll airspace formation, and indicate that this relationship has been selected for during the evolution of modern wheat. We propose that the coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops, providing a target for future improvement

    Defining the scope for altering rice leaf anatomy to improve photosynthesis: a modelling approach

    Get PDF
    Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2. We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis

    Developing a pragmatic evaluation of ICTs for older adults with cognitive impairment at scale : the IN LIFE experience

    Get PDF
    Implementing information and communications technology (ICT) at scale requires evaluation processes to capture the impact on users as well as the infrastructure into which it is being introduced. For older adults living with cognitive impairment, this requires evaluation that can accommodate different levels of cognitive impairment, alongside input from family and formal caregivers, plus stakeholder organisations. The European Horizon 2020 project INdependent LIving support Functions for the Elderly (IN LIFE) set out to integrate 17 technologies into a single digital platform for older people living with cognitive impairment plus their families, care providers and stakeholders. The IN LIFE evaluation took place across six national pilot sites to examine a number of variables including impact on the users, user acceptance of the individual services and the overall platform, plus the economic case for the IN LIFE platform. The results confirmed the interest and need among older adults, family caregivers, formal caregivers and stakeholders, for information and communications technology (ICT). Relative to the baseline, quality of life improved and cognition stabilised; however, there was an overall reluctance to pay for the platform. The findings provide insights into existing barriers and challenges for adoption of ICT for older people living with cognitive impairment
    corecore