26 research outputs found

    Variabilité génétique chez la bactérie radiorésistante Deinococcus radiodurans : la recombinaison entre séquences répétées et la transformation naturelle

    Get PDF
    The bacterium Deinococcus radiodurans is known for its ability to withstand a large number of genotoxic treatments, including exposure to ionizing or ultraviolet radiation, mitomycin C, desiccation, and oxidative stress. It is able, upon exposure to extreme doses of Îł-radiation generating hundreds of DNA breaks, to reconstitute an intact genome in only 2 to 3 hours via an ESDSA mechanism, involving massive DNA synthesis during DNA double strand break repair. Together with efficient DNA repair mechanisms, D. radiodurans possesses a survival kit comprising significant compaction of its nucleoid, protection mechanisms against protein oxidation, an original response to DNA damage and specific proteins induced after irradiation. All of these contribute to the maintenance of genomic integrity and cell survival upon exposure to various genotoxic agents. In spite of the idea that D. radiodurans is an organism with outstanding genomic stability, this bacterium has in its genome a large number of repeat sequences and mobile elements and is also naturally competent. All these factors contribute to the genetic variability of species. I was interested in two processes that can play a role in genetic variability in D. radiodurans: recombination between repeated sequences and natural transformation.The introduction, into the genome of D. radiodurans, of 438 bp direct repeated sequences separated by DNA regions ranging from 1,479 bp to 10,500 bp in length allowed me to demonstrate the major role of Single Strand Annealing (SSA) involving the DdrB protein specific for Deinococcaceae, in the "spontaneous" recombination between the repeated sequences in the absence of the RecA recombinase. The absence of DdrB in strains deficient for recombination further increased the loss of viability observed in these strains, suggesting that SSA is required for the management of blocked replication forks, a major source of genetic instability in the absence of external stress when these forks cannot be rescued by pathways involving recombination proteins.I was also interested in the natural transformation and proteins involved in this process in D. radiodurans. I demonstrated that DprA protein involved in DNA single strand protection and loading of RecA on single-stranded DNA internalized during transformation of many species such as Streptococcus pneumoniae, Helicobacter pylori, or Bacillus subtilis, is also involved in this process in D. radiodurans. I also showed that, in addition to playing a major role in transformation by plasmid DNA, DdrB is also involved in transformation by genomic DNA of cells devoid of the DprA protein.La bactĂ©rie Deinococcus radiodurans est connue pour sa capacitĂ© Ă  rĂ©sister Ă  un grand nombre de traitements gĂ©notoxiques parmi lesquels on peut citer l’exposition aux rayons ionisants, aux ultra-violets, Ă  la mitomycine C, Ă  la dessication et au stress oxydant. Elle est capable lors d’une exposition Ă  des doses extrĂȘmes de rayons Îł gĂ©nĂ©rant des centaines de cassures de l’ADN de reconstituer un gĂ©nome intact en seulement 2 Ă  3 heures via un mĂ©canisme original, l’ESDSA, impliquant une synthĂšse massive d’ADN pendant la phase de rĂ©paration des cassures de l’ADN. En plus de mĂ©canismes efficaces de rĂ©paration de l’ADN, elle possĂšde un kit de survie comprenant une compaction importante du nuclĂ©oĂŻde, des mĂ©canismes de protection des protĂ©ines contre l’oxydation, une rĂ©ponse originale aux lĂ©sions de l’ADN et des protĂ©ines spĂ©cifiques induites aprĂšs irradiation. Tous ces facteurs contribuent au maintien de l’intĂ©gritĂ© du gĂ©nome et Ă  la survie de la cellule lors de l’exposition Ă  diffĂ©rents agents gĂ©notoxiques. Souvent considĂ©rĂ© comme un organisme ayant une stabilitĂ© gĂ©nomique exceptionnelle, cette bactĂ©rie possĂšde dans son gĂ©nome un grand nombre de sĂ©quences rĂ©pĂ©tĂ©es et des Ă©lĂ©ments mobiles et est par ailleurs naturellement compĂ©tente. Ce sont autant de facteurs pouvant participer Ă  la variabilitĂ© gĂ©nĂ©tique de cette espĂšce. Je me suis donc intĂ©ressĂ©e lors de ma thĂšse Ă  deux processus pouvant participer Ă  l’instabilitĂ© gĂ©nĂ©tique chez D. radiodurans : la recombinaison entre sĂ©quences rĂ©pĂ©tĂ©es et la transformation naturelle.L’introduction dans le gĂ©nome de D. radiodurans de sĂ©quences rĂ©pĂ©tĂ©es directes de 438 pb sĂ©parĂ©es par des rĂ©gions d’ADN d’une longueur allant de 1479 pb Ă  10 500 pb m’a permis de mettre en Ă©vidence le rĂŽle majeur jouĂ© par l’appariement simple brin (Single Strand Annealing ou SSA) impliquant la protĂ©ine DdrB, spĂ©cifique des Deinococcaceae, joue un rĂŽle majeur dans la recombinaison « spontanĂ©e » entre les sĂ©quences rĂ©pĂ©tĂ©es en absence de la recombinase RecA. L’absence de DdrB dans des souches dĂ©ficientes pour la recombinaison augmente davantage la perte de viabilitĂ© observĂ©e dans ces souches ce qui suggĂšre que le SSA participe Ă  la prise en charge de fourches de rĂ©plication bloquĂ©es, source majeure d’instabilitĂ© gĂ©nĂ©tique en absence de stress extĂ©rieur, si ces fourches ne peuvent ĂȘtre prise en charge par des voies impliquant des protĂ©ines de recombinaison. Je me suis Ă©galement intĂ©ressĂ©e Ă  la transformation naturelle et aux protĂ©ines impliquĂ©es dans ce processus chez D. radiodurans. J’ai pu dĂ©montrer que la protĂ©ine DprA impliquĂ©e dans la protection de l’ADN simple brin et le chargement de RecA sur l’ADN simple brin internalisĂ© lors de la transformation de nombreuses espĂšces comme Streptococcus pneumoniae, Bacillus subtilis ou Helicobacter pylori, est Ă©galement impliquĂ©e dans la transformation chez D. radiodurans. J’ai pu montrer Ă©galement qu’en plus de jouer un rĂŽle majeur dans la transformation par de l’ADN plasmidique, DdrB est impliquĂ©e dans la transformation par de l’ADN gĂ©nomique si la protĂ©ine DprA est absente

    Insights into the role of three Endonuclease III enzymes for oxidative stress resistance in the extremely radiation resistant bacterium Deinococcus radiodurans

    Get PDF
    The extremely radiation and desiccation resistant bacterium Deinococcus radiodurans possesses three genes encoding Endonuclease III-like enzymes (DrEndoIII1, DrEndoIII2, DrEndoIII3). In vitro enzymatic activity measurements revealed that DrEndoIII2 is the main Endonuclease III in this organism, while DrEndoIII1 and 3 possess unusual and, so far, no detectable EndoIII activity, respectively. In order to understand the role of these enzymes at a cellular level, DrEndoIII knockout mutants were constructed and subjected to various oxidative stress related conditions. The results showed that the mutants are as resistant to ionizing and UV-C radiation as well as H2O2 exposure as the wild type. However, upon exposure to oxidative stress induced by methyl viologen, the knockout strains were more resistant than the wild type. The difference in resistance may be attributed to the observed upregulation of the EndoIII homologs gene expression upon addition of methyl viologen. In conclusion, our data suggest that all three EndoIII homologs are crucial for cell survival in stress conditions, since the knockout of one of the genes tend to be compensated for by overexpression of the genes encoding the other two

    “Influence of plasmids, selection markers and auxotrophic mutations on Haloferax volcanii cell shape plasticity”

    Get PDF
    Haloferax volcanii and other Haloarchaea can be pleomorphic, adopting different shapes, which vary with growth stages. Several studies have shown that H. volcanii cell shape is sensitive to various external factors including growth media and physical environment. In addition, several studies have noticed that the presence of a recombinant plasmid in the cells is also a factor impacting H. volcanii cell shape, notably by favoring the development of rods in early stages of growth. Here we investigated the reasons for this phenomenon by first studying the impact of auxotrophic mutations on cell shape in strains that are commonly used as genetic backgrounds for selection during strain engineering (namely: H26, H53, H77, H98, and H729) and secondly, by studying the effect of the presence of different plasmids containing selection markers on the cell shape of these strains. Our study showed that most of these auxotrophic strains have variation in cell shape parameters including length, aspect ratio, area and circularity and that the plasmid presence is impacting these parameters too. Our results indicated that ΔhdrB strains and hdrB selection markers have the most influence on H. volcanii cell shape, in addition to the sole presence of a plasmid. Finally, we discuss limitations in studying cell shape in H. volcanii and make recommendations based on our results for improving reproducibility of such studies

    Genetic variability in the radioresistant Deinococcus radiodurans bacterium : recombination between direct repeats and natural transformation

    No full text
    La bactĂ©rie Deinococcus radiodurans est connue pour sa capacitĂ© Ă  rĂ©sister Ă  un grand nombre de traitements gĂ©notoxiques parmi lesquels on peut citer l’exposition aux rayons ionisants, aux ultra-violets, Ă  la mitomycine C, Ă  la dessication et au stress oxydant. Elle est capable lors d’une exposition Ă  des doses extrĂȘmes de rayons Îł gĂ©nĂ©rant des centaines de cassures de l’ADN de reconstituer un gĂ©nome intact en seulement 2 Ă  3 heures via un mĂ©canisme original, l’ESDSA, impliquant une synthĂšse massive d’ADN pendant la phase de rĂ©paration des cassures de l’ADN. En plus de mĂ©canismes efficaces de rĂ©paration de l’ADN, elle possĂšde un kit de survie comprenant une compaction importante du nuclĂ©oĂŻde, des mĂ©canismes de protection des protĂ©ines contre l’oxydation, une rĂ©ponse originale aux lĂ©sions de l’ADN et des protĂ©ines spĂ©cifiques induites aprĂšs irradiation. Tous ces facteurs contribuent au maintien de l’intĂ©gritĂ© du gĂ©nome et Ă  la survie de la cellule lors de l’exposition Ă  diffĂ©rents agents gĂ©notoxiques. Souvent considĂ©rĂ© comme un organisme ayant une stabilitĂ© gĂ©nomique exceptionnelle, cette bactĂ©rie possĂšde dans son gĂ©nome un grand nombre de sĂ©quences rĂ©pĂ©tĂ©es et des Ă©lĂ©ments mobiles et est par ailleurs naturellement compĂ©tente. Ce sont autant de facteurs pouvant participer Ă  la variabilitĂ© gĂ©nĂ©tique de cette espĂšce. Je me suis donc intĂ©ressĂ©e lors de ma thĂšse Ă  deux processus pouvant participer Ă  l’instabilitĂ© gĂ©nĂ©tique chez D. radiodurans : la recombinaison entre sĂ©quences rĂ©pĂ©tĂ©es et la transformation naturelle.L’introduction dans le gĂ©nome de D. radiodurans de sĂ©quences rĂ©pĂ©tĂ©es directes de 438 pb sĂ©parĂ©es par des rĂ©gions d’ADN d’une longueur allant de 1479 pb Ă  10 500 pb m’a permis de mettre en Ă©vidence le rĂŽle majeur jouĂ© par l’appariement simple brin (Single Strand Annealing ou SSA) impliquant la protĂ©ine DdrB, spĂ©cifique des Deinococcaceae, joue un rĂŽle majeur dans la recombinaison « spontanĂ©e » entre les sĂ©quences rĂ©pĂ©tĂ©es en absence de la recombinase RecA. L’absence de DdrB dans des souches dĂ©ficientes pour la recombinaison augmente davantage la perte de viabilitĂ© observĂ©e dans ces souches ce qui suggĂšre que le SSA participe Ă  la prise en charge de fourches de rĂ©plication bloquĂ©es, source majeure d’instabilitĂ© gĂ©nĂ©tique en absence de stress extĂ©rieur, si ces fourches ne peuvent ĂȘtre prise en charge par des voies impliquant des protĂ©ines de recombinaison. Je me suis Ă©galement intĂ©ressĂ©e Ă  la transformation naturelle et aux protĂ©ines impliquĂ©es dans ce processus chez D. radiodurans. J’ai pu dĂ©montrer que la protĂ©ine DprA impliquĂ©e dans la protection de l’ADN simple brin et le chargement de RecA sur l’ADN simple brin internalisĂ© lors de la transformation de nombreuses espĂšces comme Streptococcus pneumoniae, Bacillus subtilis ou Helicobacter pylori, est Ă©galement impliquĂ©e dans la transformation chez D. radiodurans. J’ai pu montrer Ă©galement qu’en plus de jouer un rĂŽle majeur dans la transformation par de l’ADN plasmidique, DdrB est impliquĂ©e dans la transformation par de l’ADN gĂ©nomique si la protĂ©ine DprA est absente.The bacterium Deinococcus radiodurans is known for its ability to withstand a large number of genotoxic treatments, including exposure to ionizing or ultraviolet radiation, mitomycin C, desiccation, and oxidative stress. It is able, upon exposure to extreme doses of Îł-radiation generating hundreds of DNA breaks, to reconstitute an intact genome in only 2 to 3 hours via an ESDSA mechanism, involving massive DNA synthesis during DNA double strand break repair. Together with efficient DNA repair mechanisms, D. radiodurans possesses a survival kit comprising significant compaction of its nucleoid, protection mechanisms against protein oxidation, an original response to DNA damage and specific proteins induced after irradiation. All of these contribute to the maintenance of genomic integrity and cell survival upon exposure to various genotoxic agents. In spite of the idea that D. radiodurans is an organism with outstanding genomic stability, this bacterium has in its genome a large number of repeat sequences and mobile elements and is also naturally competent. All these factors contribute to the genetic variability of species. I was interested in two processes that can play a role in genetic variability in D. radiodurans: recombination between repeated sequences and natural transformation.The introduction, into the genome of D. radiodurans, of 438 bp direct repeated sequences separated by DNA regions ranging from 1,479 bp to 10,500 bp in length allowed me to demonstrate the major role of Single Strand Annealing (SSA) involving the DdrB protein specific for Deinococcaceae, in the "spontaneous" recombination between the repeated sequences in the absence of the RecA recombinase. The absence of DdrB in strains deficient for recombination further increased the loss of viability observed in these strains, suggesting that SSA is required for the management of blocked replication forks, a major source of genetic instability in the absence of external stress when these forks cannot be rescued by pathways involving recombination proteins.I was also interested in the natural transformation and proteins involved in this process in D. radiodurans. I demonstrated that DprA protein involved in DNA single strand protection and loading of RecA on single-stranded DNA internalized during transformation of many species such as Streptococcus pneumoniae, Helicobacter pylori, or Bacillus subtilis, is also involved in this process in D. radiodurans. I also showed that, in addition to playing a major role in transformation by plasmid DNA, DdrB is also involved in transformation by genomic DNA of cells devoid of the DprA protein

    Impaired growth and stationary-phase lethality of recombination-deficient mutant cells.

    No full text
    <p>GY9613 (WT) (black diamonds), GY13915 (Δ<i>ddrB</i>) (grey squares), GY15125 (Δ<i>recO</i>) (green triangles), GY12968 (Δ<i>recA</i>) (blue squares), GY16626 (Δ<i>ddrB</i> Δ<i>recA</i>) (red squares and interrupted lines), GY16636 (Δ<i>ddrB</i> Δ<i>recO</i>) (orange circles) were grown from independent colonies at 30°C to an OD<sub>650nm</sub> = 0.1 (time 0 of the growth curves). <b>A.</b> OD<sub>650nm</sub> as a function of time. <b>B.</b> Colony forming units as a function of time. <b>C.</b> Colony forming units as a function of OD<sub>650nm</sub>.</p

    Recombination between chromosomal and plasmid DNA is RecA- and RecF-dependent.

    No full text
    <p><b>A.</b> Schematic representation of the recombination assay between chromosomal and plasmid DNA. The 5’<i>tetA</i> and the 3’<i>tetA</i> regions of the <i>tetA</i> gene, containing 438 bp repeats, were introduced into the chromosomal dispensable <i>amyE</i> gene and into the p11554 plasmid giving rise to plasmid p15002, respectively. One crossing over between the two 438 bp repeated sequences (black boxes) leads to the reconstitution of a functional <i>tetA</i> gene and the integration of the plasmid into chromosomal DNA. <b>B.</b> Medians of [Tet<sup>R</sup>] frequencies in WT (GY15147), Δ<i>recA</i> (GY15158), Δ<i>recF</i> (GY15160), Δ<i>radA</i> (GY15149), and Δ<i>uvrD</i> (GY15156) bacteria, all containing the p15002 plasmid, are calculated from at least 3 independent values and represented by Tukey boxplots. Outliers are represented by open circles. The small arrows attached to the horizontal line representing the upper limit of detectable [Tet<sup>R</sup>] frequencies indicate that [Tet<sup>R</sup>] frequencies were < 5 10<sup>−7</sup> for Δ<i>recA</i> and Δ<i>recF</i> bacteria.</p

    Deletion frequencies between repeated sequences separated by 3,500, 6,500, and 10,500 bp.

    No full text
    <p><b>A.</b> Schematic representation of the constructions used. <b>B., C., D.</b> Bacteria contain 3,500 bp (panel B), 6,500 bp (panel C), and 10,500 bp (panel D) intervening sequences between the <i>tetA</i> repeats. The medians of [Tet<sup>R</sup>] frequencies calculated from 10 to 35 independent values in the tested strains are represented by Tukey boxplots. Outliers are represented by open circles. Statistically significant differences in the medians of recombination frequencies of the mutants compared to the WT GY16209, GY16227, and GY16235 in panel B, C, and D, respectively, were calculated using the non-parametric Dunn's multiple comparison test: * P < 0.05; ** P < 0.01; *** P < 0.001; (ns) if P > 0.05. <b>B.</b> WT (GY16209), Δ<i>recA</i> (GY16238), Δ<i>recO</i> (GY16262), Δ<i>recF</i> (GY16264), Δ<i>uvrD</i> (GY16608), Δ<i>ddrB</i> (GY16268), Δ<i>ddrB</i> Δ<i>recA</i> (GY16630), Δ<i>ddrB</i> Δ<i>recO</i> (GY16640) <b>C.</b> WT (GY16227), Δ<i>recA</i> (GY16244), Δ<i>recO</i> (GY16278), Δ<i>recF</i> (GY16276), Δ<i>uvrD</i> (GY16612), Δ<i>ddrB</i> (GY16282), Δ<i>ddrB</i> Δ<i>recA</i> (GY16632), Δ<i>ddrB</i> Δ<i>recO</i> (GY16642) <b>D.</b> WT (GY16235), Δ<i>recA</i> (GY16252), Δ<i>recO</i> (GY16290), Δ<i>recF</i> (GY16292), Δ<i>uvrD</i> (GY16614), Δ<i>ddrB</i> (GY16296), Δ<i>ddrB ΔrecA</i> (GY16634), Δ<i>ddrB ΔrecO</i> (GY16644).</p

    Îł-irradiation induced recombination between repeated sequences.

    No full text
    <p><b>A.</b> Induction of recombination between repeated sequences separated by 1,479 bp as a function of the radiation dose. [Tet<sup>R</sup>] frequencies were measured in at least 5 independent cultures after 20 hours of post irradiation incubation of GY12949 in TGY medium after exposure to different γ-irradiation doses. <b>B.</b> Induction by exposure to γ-irradiation of recombination between repeats separated by intervening sequences of increasing length: 1,479 bp (GY12949), 3,500 bp (GY16209), 6,500 bp (GY16227) and 10,500 bp (GY16235). <b>C.</b> γ-promoted induction of recombination between overlapping sequences separated by 1,479 bp in WT (GY12949), Δ<i>ddrB</i> (GY16016), and Δ<i>uvrD</i> (GY12953) bacteria. <b>D.</b> γ-promoted induction of recombination between overlapping sequences separated by 10,500 bp in WT (GY16235), Δ<i>ddrB</i>(GY16296), Δ<i>uvrD</i>(GY16614). <b>B.</b>, <b>C.</b>, <b>D.</b> Medians of the [Tet<sup>R</sup>] frequencies calculated from 5 to 30 independent values are represented by Tukey boxplots. Outliers were represented by open circles. Statistically significant differences in the medians of recombination frequencies between irradiated and the corresponding non-irradiated bacteria were calculated using the non-parametric Mann-Withney test: * P < 0.05; ** P < 0.01; *** P < 0.001; (ns) if P> 0.05. NI: non-irradiated bacteria. IR: irradiated bacteria.</p

    Effect of base pair changes in the repeats on their recombination frequencies.

    No full text
    <p><b>A.</b> Schematic representation of the recombination substrates containing 1 or 3 bp changes. The positions of the base pair changes calculated from the initiation codon in the 5’<i>tetA</i> region are indicated. <b>B.</b> Medians of [Tet<sup>R</sup>] frequencies calculated from 14 to 43 independent values in WT (GY12949), Δ<i>recA</i> (GY15184), Δ<i>mutS</i> (GY12978), Δ<i>mutS ΔrecA</i> (GY16620) bacteria containing identical repeated sequences, WT (GY12950), Δ<i>recA</i> (GY16624), Δ<i>mutS</i> (GY12980), Δ<i>mutS</i> Δ<i>recA</i> (GY16618) containing one base difference in the repeated sequences, and WT (GY12948), Δ<i>recA</i> (GY16622), Δ<i>mutS</i> (GY12979), Δ<i>mutS</i> Δ<i>recA</i> (GY16616) containing 3 base differences in the repeated sequences, are represented by Tukey boxplots. Outliers are represented by open circles. Statistically significant differences in the medians of recombination frequencies of the mutants and WT containing sequence differences in the repeated sequence compared to GY12949 were calculated using the non-parametric Dunn's multiple comparison test: * P < 0.05; ** P < 0.01; *** P < 0.001; ns if P > 0.05.</p

    Bacterial strains and plasmids.

    No full text
    <p><sup>(a)</sup> 5’<i>tetA</i> and the 3’<i>tetA</i> contain the 1–779 and the 342–1190 part of the <i>tetA</i> coding region, respectively. They contain a 342–779 overlapping region. The positions are numbered relatively to the first base of the initiation codon of <i>tetA</i>.</p><p><sup>(b)</sup> The positions of the mutations in the 5’<i>tetA</i> fragment are numbered relatively to the first base of the initiation codon of <i>tetA</i>.</p><p>Bacterial strains and plasmids.</p
    corecore