381 research outputs found

    Clustering of galaxies at 3.6 microns in the Spitzer Wide-area Infrared Extragalactic legacy survey

    Get PDF
    We investigate the clustering of galaxies selected in the 3.6 micron band of the Spitzer Wide-area Infrared Extragalactic (SWIRE) legacy survey. The angular two-point correlation function is calculated for eleven samples with flux limits of S_3.6 > 4-400 mujy, over an 8 square degree field. The angular clustering strength is measured at >5-sigma significance at all flux limits, with amplitudes of A=(0.49-29)\times10^{-3} at one degree, for a power-law model, A\theta^{-0.8}. We estimate the redshift distributions of the samples using phenomological models, simulations and photometric redshifts, and so derive the spatial correlation lengths. We compare our results with the GalICS (Galaxies In Cosmological Simulations) models of galaxy evolution and with parameterized models of clustering evolution. The GalICS simulations are consistent with our angular correlation functions, but fail to match the spatial clustering inferred from the phenomological models or the photometric redshifts. We find that the uncertainties in the redshift distributions of our samples dominate the statistical errors in our estimates of the spatial clustering. At low redshifts (median z<0.5) the comoving correlation length is approximately constant, r_0=6.1\pm0.5h^{-1} Mpc, and then decreases with increasing redshift to a value of 2.9\pm0.3h^{-1} Mpc for the faintest sample, for which the median redshift is z=1. We suggest that this trend can be attributed to a decrease in the average galaxy and halo mass in the fainter flux-limited samples, corresponding to changes in the relative numbers of early- and late-type galaxies. However, we cannot rule out strong evolution of the correlation length over 0.5<z<1.Comment: 14 pages, 9 (colour) figures. Published in MNRA

    Optimizing CIGB-300 intralesional delivery in locally advanced cervical cancer

    Get PDF
    Background:We conducted a phase 1 trial in patients with locally advanced cervical cancer by injecting 0.5 ml of the CK2-antagonist CIGB-300 in two different sites on tumours to assess tumour uptake, safety, pharmacodynamic activity and identify the recommended dose.Methods:Fourteen patients were treated with intralesional injections containing 35 or 70 mg of CIGB-300 in three alternate cycles of three consecutive days each before standard chemoradiotherapy. Tumour uptake was determined using 99 Tc-radiolabelled peptide. In situ B23/nucleophosmin was determined by immunohistochemistry.Results:Maximum tumour uptake for CIGB-300 70-mg dose was significantly higher than the one observed for 35 mg: 16.1±8.9 vs 31.3±12.9 mg (P=0.01). Both, AUC 24h and biological half-life were also significantly higher using 70 mg of CIGB-300 (P<0.001). Unincorporated CIGB-300 diffused rapidly to blood and was mainly distributed towards kidneys, and marginally in liver, lungs, heart and spleen. There was no DLT and moderate allergic-like reactions were the most common systemic side effect with strong correlation between unincorporated CIGB-300 and histamine levels in blood. CIGB-300, 70 mg, downregulated B23/nucleophosmin (P=0.03) in tumour specimens.Conclusion:Intralesional injections of 70 mg CIGB-300 in two sites (0.5 ml per injection) and this treatment plan are recommended to be evaluated in phase 2 studies.Fil: Sarduy, M. R.. Medical-surgical Research Center; CubaFil: García, I.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Coca, M. A.. Clinical Investigation Center; CubaFil: Perera, A.. Clinical Investigation Center; CubaFil: Torres, L. A.. Clinical Investigation Center; CubaFil: Valenzuela, C. M.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Baladrón, I.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Solares, M.. Hospital Materno Ramón González Coro; CubaFil: Reyes, V.. Center For Genetic Engineering And Biotechnology Havana; CubaFil: Hernández, I.. Isotope Center; CubaFil: Perera, Y.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Martínez, Y. M.. Medical-surgical Research Center; CubaFil: Molina, L.. Medical-surgical Research Center; CubaFil: González, Y. M.. Medical-surgical Research Center; CubaFil: Ancízar, J. A.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Prats, A.. Clinical Investigation Center; CubaFil: González, L.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Casacó, C. A.. Clinical Investigation Center; CubaFil: Acevedo, B. E.. Centro de Ingeniería Genética y Biotecnología; CubaFil: López Saura, P. A.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Alonso, Daniel Fernando. Universidad Nacional de Quilmes; ArgentinaFil: Gómez, R.. Elea Laboratories; ArgentinaFil: Perea Rodríguez, S. E.. Center For Genetic Engineering And Biotechnology Havana; Cuba. Centro de Ingeniería Genética y Biotecnología; Cub

    Herschel Multitiered Extragalactic Survey: clusters of dusty galaxies uncovered by Herschel and Planck

    Get PDF
    The potential for Planck to detect clusters of dusty, star-forming galaxies at z > 1 is tested by examining the Herschel-SPIRE images of Planck Early Release Compact Source Catalog sources lying in fields observed by the Herschel Multitiered Extragalactic Survey. Of the 16 Planck sources that lie in the ∼90 sq. deg. examined, we find that 12 are associated with single bright Herschel sources. The remaining four are associated with overdensities of Herschel sources, making them candidate clusters of dusty, star-forming galaxies. We use complementary optical/near-IR data for these ‘clumps’ to test this idea, and find evidence for the presence of galaxy clusters in all four cases. We use photometric redshifts and red sequence galaxies to estimate the redshifts of these clusters, finding that they range from 0.8 to 2.3. These redshifts imply that the Herschel sources in these clusters, which contribute to the detected Planck flux, are forming stars very rapidly, with typical total cluster star formation rates >1000M ? yr −1 . The high-redshift clusters discovered in these observations are used to constrain the epoch of cluster galaxy formation, finding that the galaxies in our clusters are 1–1.5 Gyr old at z ∼ 1–2. Prospects for the discovery of further clusters of dusty galaxies are discussed, using not only all sky Planck surveys, but also deeper, smaller area, Herschel surveys

    Remarkable Disk and Off-nuclear Starburst Activity in the "Tadpole Galaxy" as revealed by the Spitzer Space Telescope

    Full text link
    We present ground-based optical and Spitzer infrared imaging observations of the interacting galaxy UGC 10214, the "Tadpole Galaxy" (z = 0.0310), focusing on the star formation activity in the nuclear, disk, spiral arms and tidal tail regions. The major findings of this study are that the Tadpole is actively forming stars in the main disk outside of the nucleus and in the tidal plume, with an estimated mean star formation rate of ~2 to 4 M_sun/yr. The most prominent sites of mid-infrared emission define a "ring" morphology that, combined with the overall morphology of the system, suggest the interaction may belong to the rare class of off-center collisional ring systems that form both shock-induced rings of star formation and tidal plumes. The nuclear emission is solely powered by older stars, with little evidence for ongoing star formation at the center of the Tadpole. Extra-nuclear star formation accounts for >50% of the total star formation in the disk and spiral arms, featuring infrared-bright 'hot spots' that exhibit strong PAH emission, whose band strength is comparable to that of late-type star-forming disk galaxies. The tidal tail, which extends 2 arcmin (~75 kpc) into the intergalactic medium, is populated by super massive star clusters likely triggered by the galaxy-galaxy interaction that has distorted UGC 10214 into its current "tadpole" shape.Comment: to appear in the January 2006 (vol 131) issue of the Astronomical Journal; high quality graphics are located here: http://spider.ipac.caltech.edu/staff/jarrett/tadpole.htm

    The AGB population of NGC 6822: distribution and the C/M ratio from JHK photometry

    Get PDF
    NGC 6822 is an irregular dwarf galaxy and part of the Local Group. Its close proximity and apparent isolation provide a unique opportunity to study galactic evolution without any obvious strong external influences. This paper aims to study the spatial distribution of the asymptotic giant branch (AGB) population and metallicity in NGC 6822. Using deep, high quality JHK photometry, taken with WFCAM on UKIRT, carbon- and oxygen-rich AGB stars have been isolated. The ratio between their number, the C/M ratio, has then been used to derive the [Fe/H] abundance across the galaxy. The tip of the red giant branch is located at K0 = 17.41 \pm 0.11 mag and the colour separation between carbon- and oxygen-rich AGB stars is at (J - K)0 = 1.20 \pm 0.03 mag (i.e. (J - K)2MAS S {\guillemotright} 1.28 mag). A C/M ratio of 0.62 \pm 0.03 has been derived in the inner 4 kpc of the galaxy, which translates into an iron abundance of [Fe/H] = -1.29\pm0.07 dex. Variations of these parameters were investigated as a function of distance from the galaxy centre and azimuthal angle. The AGB population of NGC 6822 has been detected out to a radius of 4 kpc giving a diameter of 56 arcmin. It is metal-poor, but there is no obvious gradient in metallicity with either radial distance from the centre or azimuthal angle. The detected spread in the TRGB magnitude is consistent with that of a galaxy surrounded by a halo of old stars. The C/M ratio has the potential to be a very useful tool for the determination of metallicity in resolved galaxies but a better calibration of the C/M vs. [Fe/H] relation and a better understanding of the sensitivities of the C/M ratio to stellar selection criteria is first required

    UV to IR SEDs of UV selected galaxies in the ELAIS fields: evolution of dust attenuation and star formation activity from z=0.7 to z=0.2

    Get PDF
    We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate redshift (0.2 < z < 0.7) UV-selected galaxies from the ELAIS-N1 and ELAIS-N2 fields by fitting a multi-wavelength dataset to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using the Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition the dust attenuation of low mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M* > 10^11 M_sun. This result is consistent with a mass dependent evolution of the dust to gas ratio, which could be driven by a mass dependent efficiency of star formation in star forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M*--SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples which, for a UV selected sample, favours blue, star forming galaxies.Comment: 21 figures, accepted for publication in Ap

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    Very high energy particle acceleration powered by the jets of the microquasar SS 433

    Full text link
    SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star). Two jets of ionized matter with a bulk velocity of 0.26c\sim0.26c extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets. SS 433 differs from other microquasars in that the accretion is believed to be super-Eddington, and the luminosity of the system is 1040\sim10^{40} erg s1^{-1}. The lobes of W50 in which the jets terminate, about 40 pc from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. At higher energies (>100 GeV), the particle fluxes of γ\gamma rays from X-ray hotspots around SS 433 have been reported as flux upper limits. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons interacting with the ambient gas. Here we report TeV γ\gamma-ray observations of the SS 433/W50 system where the lobes are spatially resolved. The TeV emission is localized to structures in the lobes, far from the center of the system where the jets are formed. We have measured photon energies of at least 25 TeV, and these are certainly not Doppler boosted, because of the viewing geometry. We conclude that the emission from radio to TeV energies is consistent with a single population of electrons with energies extending to at least hundreds of TeV in a magnetic field of 16\sim16~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K. Fang, C.D. Rho , H. Zhang, H. Zho
    corecore