21 research outputs found

    Recommendations for the Treatment of Anti-Melanoma Differentiation-Associated Gene 5-positive Dermatomyositis-Associated Rapidly Progressive Interstitial Lung Disease

    Get PDF
    Objectives: The study aimed to develop evidence-based recommendations for the treatment of rapidly progressive interstitial lung disease (RPILD) associated with the anti-Melanoma Differentiation-Associated Gene 5-positive dermatomyositis (DM) syndrome. Methods: The task force comprised an expert panel of specialists in rheumatology, intensive care medicine, pulmonology, immunology, and internal medicine. The study was carried out in two phases: identifying key areas in the management of DM-RPILD syndrome and developing a set of recommendations based on a review of the available scientific evidence. Four specific questions focused on different treatment options were identified. Relevant publications in English, Spanish or French up to April 2018 were searched systematically for each topic using PubMed (MEDLINE), EMBASE, and Cochrane Library (Wiley Online). The experts used evidence obtained from these studies to develop recommendations. Results: A total of 134 studies met eligibility criteria and formed the evidentiary basis for the recommendations regarding immunosuppressive therapy and complementary treatments. Overall, there was general agreement on the initial use of combined immunosuppressive therapy. Combination of high-dose glucocorticoids and calcineurin antagonists with or without cyclophosphamide is the first choice. In the case of calcineurin antagonist contraindication or treatment failure, switching or adding other immunosuppressants may be individualized. Plasmapheresis, polymyxin B hemoperfusion and/or intravenous immunoglobulins may be used as rescue options. ECMO should be considered in life-threatening situations while waiting for a clinical response or as a bridge to lung transplant. Conclusions: Thirteen recommendations regarding the treatment of the anti-MDA5 positive DM-RPILD were developed using research-based evidence and expert opinion.This project was supported by Spanish Rheumatology Society and Spanish Society of Internal Medicine (GEAS, Study Group on Autoimmune Diseases)

    Association between age at disease onset of anti-neutrophil cytoplasmic antibody-associated vasculitis and clinical presentation and short-term outcomes

    Get PDF
    Objectives: ANCA-associated vasculitis (AAV) can affect all age groups. We aimed to show that differences in disease presentation and 6 month outcome between younger- A nd older-onset patients are still incompletely understood. Methods: We included patients enrolled in the Diagnostic and Classification Criteria for Primary Systemic Vasculitis (DCVAS) study between October 2010 and January 2017 with a diagnosis of AAV. We divided the population according to age at diagnosis: <65 years or ≄65 years. We adjusted associations for the type of AAV and the type of ANCA (anti-MPO, anti-PR3 or negative). Results: A total of 1338 patients with AAV were included: 66% had disease onset at <65 years of age [female 50%; mean age 48.4 years (s.d. 12.6)] and 34% had disease onset at ≄65 years [female 54%; mean age 73.6 years (s.d. 6)]. ANCA (MPO) positivity was more frequent in the older group (48% vs 27%; P = 0.001). Younger patients had higher rates of musculoskeletal, cutaneous and ENT manifestations compared with older patients. Systemic, neurologic,cardiovascular involvement and worsening renal function were more frequent in the older-onset group. Damage accrual, measured with the Vasculitis Damage Index (VDI), was significantly higher in older patients, 12% of whom had a 6 month VDI ≄5, compared with 7% of younger patients (P = 0.01). Older age was an independent risk factor for early death within 6 months from diagnosis [hazard ratio 2.06 (95% CI 1.07, 3.97); P = 0.03]. Conclusion: Within 6 months of diagnosis of AAV, patients >65 years of age display a different pattern of organ involvement and an increased risk of significant damage and mortality compared with younger patients

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Human genetic and immunological determinants of critical COVID-19 pneumonia

    No full text
    SARS-CoV-2 infection is benign in most individuals but, in ˜10% of cases, it triggers hypoxemic COVID-19 pneumonia, which becomes critical in ˜3% of cases. The ensuing risk of death (˜1%) doubles every five years from childhood onward and is ˜1.5 times greater in men than in women. What are the molecular and cellular determinants of critical COVID-19 pneumonia? Inborn errors of type I IFNs, including autosomal TLR3 and X-linked TLR7 deficiencies, are found in ˜1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing autoantibodies neutralizing IFN-α, –ÎČ, and/or –ω, which are more common in men than in women, are found in ˜15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can apparently be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defense against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation

    Usefulness of Thrombophilia Testing in Venous Thromboembolic Disease: Findings From the RIETE Registry

    No full text
    BACKGROUND: Information on thrombophilia risk factors for patients with upper extremity deep vein thrombosis (UEDVT) is limited. The genetic, acquired, and coagulation risk factors of an acute episode of lower EDVT (LEDVT) or UEDVT, either isolated or associated with pulmonary embolism (PE), were studied. MATERIALS AND METHODS: A total of 4503 patients participated in a thrombophilia study. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated. RESULTS: Mean age of the participants was 55 \ub1 19 years. The risk of LEDVT or UEDVT, isolated or associated with PE, was calculated according to thrombophilia factors. We found association between LEDVT and factor V Leiden ([FVL]; OR: 1.8; 95% CI 1.4-2.4) and resistance to activated protein C ([APC-R]; OR: 1.6; 95% CI 1.1-2.4). The LEDVT + PE presented an association with PTG20210A (OR: 1.5; 95% CI 1.1-2.1). No association was found between the thrombophilic defects studied and UEDVT or UEDVT + PE. CONCLUSIONS: Both FVL and APC-R carriers had the risk of developing LEDVT. The PTG20210A carriers had the risk of developing LEDVT + PE. No thrombophilic defects studied presented risk factors for UEDVT or UEDVT + PE

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs.

    Get PDF
    Life-threatening 'breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-ÎČ. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ÎČ are found in ∌20% of deceased patients across age groups, and in ∌1% of individuals aged 4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≄70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≄80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death
    corecore