217 research outputs found

    Cloth manipulation and perception competition

    Get PDF
    In the last decade, several competitions in robotic manipulation have been organised as a way to drive scientific progress in the field. They enable comparison of different approaches through a well-defined benchmark with equal test conditions. However, current competitions usually focus on rigid-object manipulation, leaving behind the challenges that suppose grasping deformable objects, especially highly-deformable ones as cloth-like objects. In this paper, we want to present the first competition in perception and manipulation of textile objects as an eficient method to accelerate scientific progress in the domain of domestic service robots. To do so, we selected a small set of tasks to benchmark in a common framework using the same set of objects and assessment methods. This competition has been conceived to freely distribute the Household Cloth Object Set to research groups working on cloth manipulation and perception and participate on the challenge. In this work, we present an overview of the tasks that are proposed in the competition, detailed descriptions of the tasks and more information on the scoring and rules are provided in the website http://www.iri.upc.edu/groups/perception/ClothManipulationChallenge/Peer ReviewedPostprint (published version

    Household cloth object set: fostering benchmarking in deformable object manipulation

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksBenchmarking of robotic manipulations is one of the open issues in robotic research. An important factor that has enabled progress in this area in the last decade is the existence of common object sets that have been shared among different research groups. However, the existing object sets are very limited when it comes to cloth-like objects that have unique particularities and challenges. This paper is a first step towards the design of a cloth object set to be distributed among research groups from the robotics cloth manipulation community. We present a set of household cloth objects and related tasks that serve to expose the challenges related to gathering such an object set and propose a roadmap to the design of common benchmarks in cloth manipulation tasks, with the intention to set the grounds for a future debate in the community that will be necessary to foster benchmarking for the manipulation of cloth-like objects. Some RGB-D and object scans are collected as examples for the objects in relevant configurations and shared in http://www.iri.upc.edu/groups/perception/ClothObjectSet/Peer ReviewedPostprint (author's final draft

    Canadian Jewish Poetry: A Roundtable

    Get PDF
    Is Canadian Jewish Poetry a meaningful category of study? Are there particular traits that differentiate Canadian Jewish poets from poets of other countries, or from writers in other genres? How do contemporary poets confront the looming legacy of Irving Layton, Leonard Cohen, and A.M. Klein? Six prominent poets and scholars conduct a roundtable discussion to articulate recent developments in the field.La poésie juive canadienne est-elle une catégorie d’étude significative? Y a-t-il des traits particuliers qui différencient les poètes juifs canadiens des poètes d’autres pays, ou des écrivains d’autres genres? Comment les poètes contemporains font-ils face à l’héritage imminent d’Irving Layton, Leonard Cohen et A.M. Klein ? Six poètes et universitaires éminents organisent une table ronde pour exposer les développements récents dans ce domaine

    Forces Shaping the Fastest Evolving Regions in the Human Genome

    Get PDF
    Comparative genomics allow us to search the human genome for segments that were extensively changed in the last ~5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements are dramatically changed in human but not in other primates, with seven times more substitutions in human than in chimp. The accelerated elements, and in particular the top five, show a strong bias for adenine and thymine to guanine and cytosine nucleotide changes and are disproportionately located in high recombination and high guanine and cytosine content environments near telomeres, suggesting either biased gene conversion or isochore selection. In addition, there is some evidence of directional selection in the regions containing the two most accelerated regions. A combination of evolutionary forces has contributed to accelerated evolution of the fastest evolving elements in the human genome

    Relationship between Exercise Capacity and Brain Size in Mammals

    Get PDF
    A great deal of experimental research supports strong associations between exercise, cognition, neurogenesis and neuroprotection in mammals. Much of this work has focused on neurogenesis in individual subjects in a limited number of species. However, no study to date has examined the relationship between exercise and neurobiology across a wide range of mammalian taxa. It is possible that exercise and neurobiology are related across evolutionary time. To test this hypothesis, this study examines the association between exercise and brain size across a wide range of mammals.Controlling for associations with body size, we examined the correlation between brain size and a proxy for exercise frequency and capacity, maximum metabolic rate (MMR; ml O(2) min(-1)). We collected brain sizes and MMRs from the literature and calculated residuals from the least-squares regression line describing the relationship between body mass and each variable of interest. We then analyzed the correlation between residual brain size and residual MMR both before and after controlling for phylogeny using phylogenetic independent contrasts. We found a significant positive correlation between maximum metabolic rate and brain size across a wide range of taxa.These results suggest a novel hypothesis that links brain size to the evolution of locomotor behaviors in a wide variety of mammalian species. In the end, we suggest that some portion of brain size in nonhuman mammals may have evolved in conjunction with increases in exercise capacity rather than solely in response to selection related to cognitive abilities

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype
    corecore