23 research outputs found

    Complete cosmic history with a dynamical Λ = Λ(H) term

    Get PDF
    In the present mainstream cosmology, matter and space-time emerged from a singularity and evolved through four distinct periods: early inflation, radiation, dark matter, and late-time inflation (driven by dark energy). During the radiation and dark matter dominated stages, the universe is decelerating while the early and late-time inflations are accelerating stages. A possible connection between the accelerating periods remains unknown, and, even more intriguing, the best dark energy candidate powering the present accelerating stage ( Λ -vacuum) is plagued with the cosmological constant and coincidence puzzles. Here we propose an alternative solution for such problems based on a large class of time-dependent vacuum energy density models in the form of power series of the Hubble rate, Λ = Λ ( H ) . The proposed class of Λ ( H ) -decaying vacuum model provides: (i) a new mechanism for inflation (different from the usual inflaton models), (ii) a natural mechanism for a graceful exit, which is universal for the whole class of models; (iii) the currently accelerated expansion of the universe, (iv) a mild dynamical dark energy at present; and (v) a final de Sitter stage. Remarkably, the late-time cosmic expansion history of our class of models is very close to the concordance Λ CDM model, but above all it furnishes the necessary smooth link between the initial and final de Sitter stages through the radiation- and matter-dominated epochs

    Thermodynamical aspects of running vacuum models

    Get PDF
    The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ(H)∝Hn+2, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρr∝T4, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S0∌1087-1088 (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρΛ0/ρΛI∌10−123. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio

    Quantum gravity phenomenology at the dawn of the multi-messenger era -- A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers

    Snowmass2021 - Letter of interest cosmology intertwined I: Perspectives for the next decade

    Get PDF
    The standard Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant value, the tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions

    Cosmology intertwined III: fσ8 and S8

    Get PDF
    The standard Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few statistically significant tensions and anomalies were found in the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension between Planck data and weak lensing measurements and redshift surveys, in the value of the matter energy density and the amplitude (or the growth rate ) of cosmic structure. We list a few promising models for solving this tension, and discuss the importance of trying to fit multiple cosmological datasets with complete physical models, rather than fitting individual datasets with a few handpicked theoretical parameters

    Snowmass2021 - Letter of interest cosmology intertwined IV: the age of the universe and its curvature

    Get PDF
    A precise measurement of the curvature of the Universe is of prime importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early-Universe scenarios. Recent observations, while broadly consistent with a spatially flat standard Cold Dark Matter (CDM) model, show tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be at play, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat CDM model

    Snowmass2021 - Letter of interest cosmology intertwined II: the hubble constant tension

    Get PDF
    The current cosmological probes have provided a fantastic confirmation of the standard Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the tension between the Planck estimate of the Hubble constant and the SH0ES collaboration measurements. After showing the evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade’s experiments will be crucial

    Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies

    Get PDF
    The standard Cold Dark Matter (CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade’s experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density m, and the amplitude or rate of the growth of structure (σ8, f σ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions

    Thermodynamical aspects of running vacuum models

    No full text
    The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ(H)∝Hn+2, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρr∝T4, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S0∌1087-1088 (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρΛ0/ρΛI∌10−123. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases
    corecore