330 research outputs found

    Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells

    Get PDF
    Although a growing body of evidence suggests that colorectal cancer (CRC) is associated with alterations of fatty acid (FA) profiles in serum and tumor tissues, available data about polyunsaturated fatty acid (PUFA) content in CRC patients are inconclusive. Our study showed that CRC tissues contained more PUFAs than normal large intestinal mucosa. However, serum levels of PUFAs in CRC patients were lower than in healthy controls. To explain the mechanism of PUFA alterations in CRC, we measured FA uptake by the colon cancer cells and normal colon cells. The levels of PUFAs in colon cancer cell culture medium decreased significantly with incubation time, while no changes were observed in the medium in which normal colon cells were incubated. Our findings suggest that the alterations in tumor and serum PUFA profiles result from preferential uptake of these FAs by cancer cells; indeed, PUFAs are essential for formation of cell membrane phospholipids during rapid proliferation of cancer cells. This observation puts into question potential benefits of PUFA supplementation in CRC patients

    Alpine altitude climate treatment for severe and uncontrolled asthma: An EAACI position paper

    Full text link
    Currently available European Alpine Altitude Climate Treatment (AACT) programs combine the physical characteristics of altitude with the avoidance of environmental triggers in the alpine climate and a personalized multidisciplinary pulmonary rehabilitation approach. The reduced barometric pressure, oxygen pressure, and air density, the relatively low temperature and humidity, and the increased UV radiation at moderate altitude induce several physiological and immunological adaptation responses. The environmental characteristics of the alpine climate include reduced aeroallergens such as house dust mites (HDM), pollen, fungi, and less air pollution. These combined factors seem to have immunomodulatory effects controlling pathogenic inflammatory responses and favoring less neuro-immune stress in patients with different asthma phenotypes. The extensive multidisciplinary treatment program may further contribute to the observed clinical improvement by AACT in asthma control and quality of life, fewer exacerbations and hospitalizations, reduced need for oral corticosteroids (OCS), improved lung function, decreased airway hyperresponsiveness (AHR), improved exercise tolerance, and improved sinonasal outcomes. Based on observational studies and expert opinion, AACT represents a valuable therapy for those patients irrespective of their asthma phenotype, who cannot achieve optimal control of their complex condition despite all the advances in medical science and treatment according to guidelines, and therefore run the risk of falling into a downward spiral of loss of physical and mental health. In the light of the observed rapid decrease in inflammation and immunomodulatory effects, AACT can be considered as a natural treatment that targets biological pathways. Keywords: altitude; asthma; climate; environment; pulmonary rehabilitation

    Coincident Pre- and Postsynaptic Activation Induces Dendritic Filopodia via Neurotrypsin-Dependent Agrin Cleavage

    Get PDF
    SummaryThe synaptic serine protease neurotrypsin is essential for cognitive function, as its deficiency in humans results in severe mental retardation. Recently, we demonstrated the activity-dependent release of neurotrypsin from presynaptic terminals and proteolytical cleavage of agrin at the synapse. Here we show that the activity-dependent formation of dendritic filopodia is abolished in hippocampal neurons from neurotrypsin-deficient mice. Administration of the neurotrypsin-dependent 22 kDa fragment of agrin rescues the filopodial response. Detailed analyses indicated that presynaptic action potential firing is necessary for the release of neurotrypsin, whereas postsynaptic NMDA receptor activation is necessary for the neurotrypsin-dependent cleavage of agrin. This contingency characterizes the neurotrypsin-agrin system as a coincidence detector of pre- and postsynaptic activation. As the resulting dendritic filopodia are thought to represent precursors of synapses, the neurotrypsin-dependent cleavage of agrin at the synapse may be instrumental for a Hebbian organization and remodeling of synaptic circuits in the CNS

    Effects of non‐steroidal anti‐inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses. EAACI task force on eicosanoids consensus report in times of COVID‐19

    Get PDF
    Non‐steroidal anti‐inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti‐inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS‐CoV‐2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID‐19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs‐exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID‐19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID‐19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research

    Математическое моделирование влияния лесного пожара на элементы деревянного строения

    Get PDF
    Цель исследования: математическое моделирование влияния лесного пожара на элементы деревянного строения. Будет использован конечно-разностный метод. Будут определены численно условия воздействия лесного пожара на элементы деревянного строения.The purpose of the study: mathematical modeling of the impact of a forest fire on the elements of a wooden structure. The finite-difference method will be used. The conditions for the impact of a forest fire on the elements of a wooden structure will be determined numerically

    A comparison of the use of different swab materials for optimal diagnosis of amoebic gill disease (AGD) in Atlantic salmon (Salmo salar L.)

    Get PDF
    Routine gill swabbing is a non‐destructive sampling method used for the downstream qPCR detection and quantitation of the pathogen Neoparamoeba perurans, a causative agent of amoebic gill disease (AGD). Three commercially available swabs were compared aiming their application for timelier AGD diagnosis (Calgiswab® (calcium alginate fibre‐tipped), Isohelix® DNA buccal and cotton wool‐tipped). Calcium alginate is soluble in most sodium salts, which potentially allows the total recovery of biological material, hence a better extraction of target organisms’ DNA. Thus, this study consisted of (a) an in vitro assessment involving spiking of the swabs with known amounts of amoebae and additional assessment of retrieval efficiency of amoebae from agar plates; (b) in vivo testing by swabbing of gill arches (second, third and fourth) of AGD‐infected fish. Both in vitro and in vivo experiments identified an enhanced amoeba retrieval with Calgiswab® and Isohelix® swabs in comparison with cotton swabs. Additionally, the third and fourth gill arches presented significantly higher amoebic loads compared to the second gill arch. Results suggest that limiting routine gill swabbing to one or two arches, instead of all, could likely lead to reduced stress‐related effects incurred by handling and sampling and a timelier diagnosis of AGD

    Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology

    Get PDF
    The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune‐driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence‐related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging
    corecore