162 research outputs found

    Computer Simulations of Corporation's Reaction to an Environment on the Basis of Corporate Entrepreneurship Model in British Petroleum

    Get PDF
    Basing on mean field theory and corporate entrepreneurship (CE) concept a mathematical model of complex organization has been derived. The model was applied to computer simulations of corporation's reaction to hostile environment in corporations similar to British Petroleum.mathematical concept, organization

    Astrophysical tau neutrinos and their detection by large neutrino telescopes

    Full text link
    We present results of the detailed Monte Carlo calculation of the rates of double-bang events in 1 km3^3 underwater neutrino telescope with taking into account the effects of τ\tau-neutrino propagation through the Earth. As an input, the moderately optimistic theoretical predictions for diffuse neutrino spectra of AGN jets are used.Comment: Talk given at the NANP'03 conference, June 2003. 4 pages, one eps figur

    Breakthrough in Modeling of Electrodiffusion Processes; Continuation and Extensions of the Classical Work of Richard Buck

    Get PDF
    In 1978 Brumleve and Buck published an important paper [1] pertaining to numerical modeling of electrodiffusion. At the time their approach was not immediately recognized and followed. However, it has changed since the beginning of 21st century. The approach of Brumleve and Buck based on Nernst-Planck-Poisson (NPP) equations is utilized to model transient behavior of various electrochemical processes. Multi-layers and reactions allow extending applications to selectivity and low detection limit with time variability, influence of parameters (ion diffusivities, membrane thickness, permittivity, rate constants), and ion interference on ion-sensor responses. Solution of NPP inverse problem allows for optimizing sensor properties and measurement environment. Conditions under which experimentally measured selectivity coefficients are true (unbiased) and detection limit is optimized are demonstrated. Impedance spectra obtained directly from NPPs are presented. Modeling durability and diagnosis of reinforced concrete is presented. Chlorides transport in concrete is modeled using NPPs and compared to other solutions

    Shower Power: Isolating the Prompt Atmospheric Neutrino Flux Using Electron Neutrinos

    Get PDF
    At high energies, the very steep decrease of the conventional atmospheric component of the neutrino spectrum should allow the emergence of even small and isotropic components of the total spectrum, indicative of new physics, provided that they are less steeply decreasing, as generically expected. One candidate is the prompt atmospheric neutrino flux, a probe of cosmic ray composition in the region of the knee as well as small-xx QCD, below the reach of collider experiments. A second is the diffuse extragalactic background due to distant and unresolved AGNs and GRBs, a key test of the nature of the highest-energy sources in the universe. Separating these new physics components from the conventional atmospheric neutrino flux, as well as from each other, will be very challenging. We show that the charged-current {\it electron} neutrino "shower" channel should be particularly effective for isolating the prompt atmospheric neutrino flux, and that it is more generally an important complement to the usually-considered charged-current {\it muon} neutrino "track" channel. These conclusions remain true even for the low prompt atmospheric neutrino flux predicted in a realistic cosmic ray scenario with heavy and varying composition across the knee (Candia and Roulet, 2003 JCAP {\bf 0309}, 005). We also improve the corresponding calculation of the neutrino flux induced by cosmic ray collisions with the interstellar medium.Comment: 15 pages, 4 figures. Minor modifications, version accepted for publication in JCA

    Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector

    Full text link
    A search for nearly vertical up-going muon-neutrinos from neutralino annihilations in the center of the Earth has been performed with the AMANDA-B10 neutrino detector. The data sample collected in 130.1 days of live-time in 1997, ~10^9 events, has been analyzed for this search. No excess over the expected atmospheric neutrino background is oberved. An upper limit at 90% confidence level on the annihilation rate of neutralinos in the center of the Earth is obtained as a function of the neutralino mass in the range 100 GeV-5000 GeV, as well as the corresponding muon flux limit.Comment: 14 pages, 11 figures. Version accepted for publication in Physical Review

    The Lake Baikal neutrino experiment: selected results

    Get PDF
    We review the present status of the lake Baikal Neutrino Experiment and present selected physical results gained with the consequetive stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, very high energy neutrinos, search for neutrino events from WIMP annihilation, search for magnetic monopoles and environmental studies. We also describe an air Cherenkov array developed for the study of angular resolution of NT-200.Comment: 25 pages, 12 figures. To appear in the Procrrdings of International Conference on Non-Accelerator New Physics, June 28 - July 3, 1999, Dubna, Russi

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Nonlinearity and Topology

    Full text link
    The interplay of nonlinearity and topology results in many novel and emergent properties across a number of physical systems such as chiral magnets, nematic liquid crystals, Bose-Einstein condensates, photonics, high energy physics, etc. It also results in a wide variety of topological defects such as solitons, vortices, skyrmions, merons, hopfions, monopoles to name just a few. Interaction among and collision of these nontrivial defects itself is a topic of great interest. Curvature and underlying geometry also affect the shape, interaction and behavior of these defects. Such properties can be studied using techniques such as, e.g. the Bogomolnyi decomposition. Some applications of this interplay, e.g. in nonreciprocal photonics as well as topological materials such as Dirac and Weyl semimetals, are also elucidated
    corecore