7,709 research outputs found
Prediction of airfoil stall using Navier-Stokes equations in streamline coordinates
A Navier-Stokes procedure to calculate the flow about an airfoil at incidence was developed. The parabolized equations are solved in the streamline coordinates generated for an arbitrary airfoil shape using conformal mapping. A modified k-epsilon turbulence model is applied in the entire domain, but the eddy viscosity in the laminar region is suppressed artificially to simulate the region correctly. The procedure was applied to airfoils at various angles of attack, and the results are quite satisfactory for both laminar and turbulent flows. It is shown that the present choice of the coordinate system reduces the error due to numerical diffusion, and that the lift is accurately predicted for a wide range of incidence
The Covenant Concept in Old Testament Theology-
The Covenant of God with man represents in the Old Testament the closest possible relationship. It is the heart of a movement of God downwards. In its massive sweep across the Old Testament it marks the center of history and religion
On dynamical gluon mass generation
The effective gluon propagator constructed with the pinch technique is
governed by a Schwinger-Dyson equation with special structure and gauge
properties, that can be deduced from the correspondence with the background
field method. Most importantly the non-perturbative gluon self-energy is
transverse order-by-order in the dressed loop expansion, and separately for
gluonic and ghost contributions, a property which allows for a meanigfull
truncation. A linearized version of the truncated Schwinger-Dyson equation is
derived, using a vertex that satisfies the required Ward identity and contains
massless poles. The resulting integral equation, subject to a properly
regularized constraint, is solved numerically, and the main features of the
solutions are briefly discussed.Comment: Special Article - QNP2006: 4th International Conference on Quarks and
Nuclear Physics, Madrid, Spain, 5-10 June 200
Arp 65 interaction debris: massive HI displacement and star formation
Context: Pre-merger interactions between galaxies can induce significant
changes in the morphologies and kinematics of the stellar and ISM components.
Large amounts of gas and stars are often found to be disturbed or displaced as
tidal debris. This debris then evolves, sometimes forming stars and
occasionally tidal dwarf galaxies. Here we present results from our HI study of
Arp 65, an interacting pair hosting extended HI tidal debris. Aims: In an
effort to understand the evolution of tidal debris produced by interacting
pairs of galaxies, including in situ star and tidal dwarf galaxy formation, we
are mapping HI in a sample of interacting galaxy pairs. The Arp 65 pair is one
of them. Methods: Our resolved HI 21 cm line survey is being carried out using
the Giant Metrewave Radio Telescope (GMRT). We used our HI survey data as well
as available SDSS optical, Spitzer infra-red and GALEX UV data to study the
evolution of the tidal debris and the correlation of HI with the star-forming
regions within it. Results: In Arp 65 we see a high impact pre-merger
interaction involving a pair of massive galaxies (NGC 90 and NGC 93) that have
a stellar mass ratio of ~ 1:3. The interaction, which probably occurred ~ 1.0
-- 2.5 10 yr ago, appears to have displaced a large fraction of
the HI in NGC 90 (including the highest column density HI) beyond its optical
disk. We also find extended ongoing star formation in the outer disk of NGC 90.
In the major star-forming regions, we find the HI column densities to be ~ 4.7
10 cm or lower. But no signature of star formation was
found in the highest column density HI debris, SE of NGC 90. This indicates
conditions within the highest column density HI debris remain hostile to star
formation and it reaffirms that high HI column densities may be a necessary but
not sufficient criterion for star formation.Comment: Accepted in A&
Phase and Charge reentrant phase transitions in two capacitively coupled Josephson arrays with ultra-small junction
We have studied the phase diagram of two capacitively coupled Josephson
junction arrays with charging energy, , and Josephson coupling energy,
. Our results are obtained using a path integral Quantum Monte Carlo
algorithm. The parameter that quantifies the quantum fluctuations in the i-th
array is defined by . Depending on
the value of , each independent array may be in the semiclassical or
in the quantum regime: We find that thermal fluctuations are important when
and the quantum fluctuations dominate when . We have extensively studied the interplay between vortex and charge
dominated individual array phases. The two arrays are coupled via the
capacitance at each site of the lattices. We find a {\it
reentrant transition} in , at low temperatures, when one of
the arrays is in the semiclassical limit (i.e. ) and the
quantum array has , for the values considered for
the interlayer capacitance. In addition, when , and
for all the inter-layer couplings considered above, a {\it novel} reentrant
phase transition occurs in the charge degrees of freedom, i.e. there is a
reentrant insulating-conducting transition at low temperatures. We obtain the
corresponding phase diagrams and found some features that resemble those seen
in experiments with 2D JJA.Comment: 25 Latex pages including 8 encapsulated poscript figures. Accepted
for publication in Phys. Rev B (Nov. 2004 Issue
Scalable Mining of Common Routes in Mobile Communication Network Traffic Data
A probabilistic method for inferring common routes from mobile communication network traffic data is presented. Besides providing mobility information, valuable in a multitude of application areas, the method has the dual purpose of enabling efficient coarse-graining as well as anonymisation by mapping individual sequences onto common routes. The approach is to represent spatial trajectories by Cell ID sequences that are grouped into routes using locality-sensitive hashing and graph clustering. The method is demonstrated to be scalable, and to accurately group sequences using an evaluation set of GPS tagged data
Zero-field Kondo splitting and quantum-critical transition in double quantum dots
Double quantum dots offer unique possibilities for the study of many-body
correlations. A system containing one Kondo dot and one effectively
noninteracting dot maps onto a single-impurity Anderson model with a structured
(nonconstant) density of states. Numerical renormalization-group calculations
show that while band filtering through the resonant dot splits the Kondo
resonance, the singlet ground state is robust. The system can also be
continuously tuned to create a pseudogapped density of states and access a
quantum critical point separating Kondo and non-Kondo phases.Comment: 4 pages, 4 figures; Accepted for publication in Physical Review
Letter
- …