737 research outputs found

    Quantum enhanced X-ray detection

    Full text link
    We present the first experimental demonstration of quantum-enhanced detection at x-ray wavelengths. We show that x-ray pairs that are generated by spontaneous down-conversion can be used for the generation of heralded x-ray photons and measure directly the sub-Poissonian statistics of the single photons by using photon number resolving detectors. We utilize the properties of the strong time-energy correlations of the down converted photons to demonstrate the ability to improve the visibility and the signal-to-noise ratio of an image with a small number of photons in an environment with a noise level that is higher than the signal by many orders of magnitude. In our work we demonstrate a new protocol for the measurement of quantum effects with x-rays using advantages such as background free measurements that the x-ray regime offers for experiments aiming at testing fundamental concepts in quantum optics.Comment: 12 page

    Surface Engineering Strategy Using Urea To Improve the Rate Performance of Na2Ti3O7 in Na‐Ion Batteries

    Get PDF
    Na2Ti3O7 (NTO) is considered a promising anode material for Na‐ion batteries due to its layered structure with an open framework and low and safe average operating voltage of 0.3 V vs. Na+/Na. However, its poor electronic conductivity needs to be addressed to make this material attractive for practical applications among other anode choices. Here, we report a safe, controllable and affordable method using urea that significantly improves the rate performance of NTO by producing surface defects such as oxygen vacancies and hydroxyl groups, and the secondary phase Na2Ti6O13. The enhanced electrochemical performance agrees with the higher Na+ ion diffusion coefficient, higher charge carrier density and reduced bandgap observed in these samples, without the need of nanosizing and/or complex synthetic strategies. A comprehensive study using a combination of diffraction, microscopic, spectroscopic and electrochemical techniques supported by computational studies based on DFT calculations, was carried out to understand the effects of this treatment on the surface, chemistry and electronic and charge storage properties of NTO. This study underscores the benefits of using urea as a strategy for enhancing the charge storage properties of NTO and thus, unfolding the potential of this material in practical energy storage applications

    Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructures—Role of Precursor and Surfactant Reactivity and Performance in N2 Electroreduction

    Get PDF
    Copper selenide-sulfide nanostructures were synthesized using metal-organic chemical routes in the presence of Cu- and Se-precursors as well as S-containing compounds. Our goal was first to examine if the initial Cu/Se 1:1 molar proportion in the starting reagents would always lead to equiatomic composition in the final product, depending on other synthesis parameters which affect the reagents reactivity. Such reaction conditions were the types of precursors, surfactants and other reagents, as well as the synthesis temperature. The use of ‘hot-injection’ processes was avoided, focusing on ‘non-injection’ ones; that is, only heat-up protocols were employed, which have the advantage of simple operation and scalability. All reagents were mixed at room temperature followed by further heating to a selected high temperature. It was found that for samples with particles of bigger size and anisotropic shape the CuSe composition was favored, whereas particles with smaller size and spherical shape possessed a Cu2−xSe phase, especially when no sulfur was present. Apart from elemental Se, Al2Se3 was used as an efficient selenium source for the first time for the acquisition of copper selenide nanostructures. The use of dodecanethiol in the presence of trioctylphosphine and elemental Se promoted the incorporation of sulfur in the materials crystal lattice, leading to Cu-Se-S compositions. A variety of techniques were used to characterize the formed nanomaterials such as XRD, TEM, HRTEM, STEM-EDX, AFM and UV-Vis-NIR. Promising results, especially for thin anisotropic nanoplates for use as electrocatalysts in nitrogen reduction reaction (NRR), were obtained

    Postextubation pulmonary edema: A case series and review

    Get PDF
    SummaryWe report a series of patients with postextubation pulmonary edema who had no obvious risk factors for the development of this syndrome.MethodsPatients identified by the pulmonary consultation service at an academic medical center were reviewed.ResultsFourteen cases were collected and analyzed. The average age was 34.5 years; 12 patients were male. The average BMI was 25.5. None had documented previous lung disease. Most operations were scheduled as outpatient procedures, and the type of surgery ranged from an incision and drainage of a bite wound to an open reduction- internal fixation of the radius. None of the patients had upper airway surgery. The length of surgeries ranged from 27 to 335min. Laryngospasm was the most commonly identified obstructing event postextubation. Treatment involved airway support when needed, supplemental oxygen, and diuretics.ConclusionsIt would appear that all patients, especially young men, are at risk for the development of this syndrome and that the pathogenesis remains uncertain in many cases

    Gender divisions of domestic labour and paid domestic services

    Get PDF
    This article investigates the relationship between sharing domestic tasks in dual-earner mixed-sex couples and using of paid domestic services. Results from a small-scale survey of the domestic outsourcing practices of employees of a large service-sector organisation in the UK show that in households: full-time working by women and presence of younger children is positively associated with using of domestic services; there is no association between the gender division of traditionally female domestic tasks carried out within the couple and paid services; in contrast, men’s greater involvement in traditionally male and traditionally gender-neutral tasks is positively associating with using paid domestic services. These findings tentatively suggest a new arrangement may be emerging whereby some couples address a heavy workload and desire for a less traditional division of domestic labour by men participating more in close-ended domestic tasks and outsourcing more time-consuming tasks traditionally undertaken by women to paid service providers

    Functionalized metallic 2D transition metal dichalcogenide-based solid-state electrolyte for flexible all-solid-state supercapacitors

    Get PDF
    Highly efficient and durable flexible solid-state supercapacitors (FSSSCs) are emerging as low-cost devices for portable and wearable electronics due to the elimination of leakage of toxic/corrosive liquid electrolytes and their capability to withstand elevated mechanical stresses. Nevertheless, the spread of FSSSCs requires the development of durable and highly conductive solid-state electrolytes, whose electrochemical characteristics must be competitive with those of traditional liquid electrolytes. Here, we propose an innovative composite solid-state electrolyte prepared by incorporating metallic two-dimensional group-5 transition metal dichalcogenides, namely, liquid-phase exfoliated functionalized niobium disulfide (f-NbS2) nanoflakes, into a sulfonated poly(ether ether ketone) (SPEEK) polymeric matrix. The terminal sulfonate groups in f-NbS2 nanoflakes interact with the sulfonic acid groups of SPEEK by forming a robust hydrogen bonding network. Consequently, the composite solid-state electrolyte is mechanically/dimensionally stable even at a degree of sulfonation of SPEEK as high as 70.2%. At this degree of sulfonation, the mechanical strength is 38.3 MPa, and thanks to an efficient proton transport through the Grotthuss mechanism, the proton conductivity is as high as 94.4 mS cm–1 at room temperature. To elucidate the importance of the interaction between the electrode materials (including active materials and binders) and the solid-state electrolyte, solid-state supercapacitors were produced using SPEEK and poly(vinylidene fluoride) as proton conducting and nonconducting binders, respectively. The use of our solid-state electrolyte in combination with proton-conducting SPEEK binder and carbonaceous electrode materials (mixture of activated carbon, single/few-layer graphene, and carbon black) results in a solid-state supercapacitor with a specific capacitance of 116 F g–1 at 0.02 A g–1, optimal rate capability (76 F g–1 at 10 A g–1), and electrochemical stability during galvanostatic charge/discharge cycling and folding/bending stresses

    Statin Efficacy and Safety for Lipid Modification in Apparently Healthy Male Military Aircrew

    Get PDF
    Introduction: Military aircrew men represent an elite group of relatively young, fit, and healthy people. The effectiveness of statin treatment in reducing low-density lipoprotein cholesterol (LDL-C) according to the current National Cholesterol Education Program (NCEP) guidelines, its safety, and compliance in this group of people has not yet been determined. Methods: We prospectively evaluated 84 military aircrew men (mean age 43 Ïź 7 yr) with LDL-C above the current NCEP guidelines. The patients were divided into two groups according to their coronary risk factors: Group 1, LDL-C goal Ïœ 160 mg ⅐ dL ÏȘ1 ; Group 2, LDL-C goal Ïœ 130 mg ⅐ dL ÏȘ1 . All patients received statins in addition to therapeutic lifestyle changes and were followed for a mean of 3 Ïź 1 yr according to a simple flow chart. Lipoprotein levels, liver function tests, creatinine phosphokinase, and subjective adverse reactions were checked periodically. Results: LDL-C significantly declined by 32% (p Ïœ 0.0001) within the first month of treatment and 99% of subjects achieved their LDL-C goal within 114 Ïź 35 d from statin therapy initiation. The Framingham estimated 10-yr coronary risk showed a reduction at an average of 12 mo after statin therapy initiation from a baseline value of 6.54% to 3.95% (p Ï­ 0.003). No subjects were grounded or disqualified from duty, there were no cardiovascular events during follow-up, and compliance to therapy was high [82/84 (98%)]. Discussion: Statin treatment in this highly select, relatively young group of aircrew men significantly and safely lowered LDL-C cholesterol levels

    Molybdenum Oxide Supported on Ti3AlC2 is an Active Reverse Water−Gas Shift Catalyst

    Get PDF
    MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti(3)AlC(2 )MAX phase as a support for molybdenum oxide for the reverse water-gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts
    • 

    corecore